import torch import numpy as np import pandas as pd import json import argparse from tqdm import tqdm import os from Utility.storage_config import MODELS_DIR def approximate_and_inject_language_embeddings(model_path, df, iso_lookup, min_n_langs=5, max_n_langs=25, threshold_percentile=50): # load pretrained language_embeddings model = torch.load(model_path, map_location="cpu") lang_embs = model["model"]["encoder.language_embedding.weight"] features_per_closest_lang = 2 # for combined, df has up to 5 features (if containing individual distances) per closest lang + 1 target lang column if "combined_dist_0" in df.columns: if "map_dist_0" in df.columns: features_per_closest_lang += 1 if "asp_dist_0" in df.columns: features_per_closest_lang += 1 if "tree_dist_0" in df.columns: features_per_closest_lang += 1 n_closest = len(df.columns) // features_per_closest_lang distance_type = "combined" # else, df has 2 features per closest lang + 1 target lang column else: n_closest = len(df.columns) // features_per_closest_lang if "map_dist_0" in df.columns: distance_type = "map" elif "tree_dist_0" in df.columns: distance_type = "tree" elif "asp_dist_0" in df.columns: distance_type = "asp" elif "learned_dist_0" in df.columns: distance_type = "learned" else: distance_type = "random" # get relevant columns closest_lang_columns = [f"closest_lang_{i}" for i in range(n_closest)] closest_dist_columns = [f"{distance_type}_dist_{i}" for i in range(n_closest)] closest_lang_columns = closest_lang_columns[:max_n_langs] closest_dist_columns = closest_dist_columns[:max_n_langs] assert df[closest_dist_columns[-1]].isna().sum().sum() == 0 # get threshold based on distance of a certain percentile of the furthest language across all samples threshold = np.percentile(df[closest_dist_columns[-1]], threshold_percentile) print(f"threshold: {threshold:.4f}") for row in tqdm(df.itertuples(), total=df.shape[0], desc="Approximating language embeddings"): avg_emb = torch.zeros([16]) dists = [getattr(row, d) for i, d in enumerate(closest_dist_columns) if i < min_n_langs or getattr(row, d) < threshold] langs = [getattr(row, l) for l in closest_lang_columns[:len(dists)]] for lang in langs: lang_emb = lang_embs[iso_lookup[-1][str(lang)]] avg_emb += lang_emb avg_emb /= len(langs) # normalize lang_embs[iso_lookup[-1][str(row.target_lang)]] = avg_emb # inject language embeddings into Toucan model and save model["model"]["encoder.language_embedding.weight"] = lang_embs modified_model_path = model_path.split(".")[0] + "_zeroshot_lang_embs.pt" torch.save(model, modified_model_path) print(f"Replaced unsupervised language embeddings with zero-shot approximations.\nSaved modified model to {modified_model_path}") if __name__ == "__main__": default_model_path = os.path.join(MODELS_DIR, "ToucanTTS_Meta", "best.pt") # MODELS_DIR must be absolute path, the relative path will fail at this location default_csv_path = "distance_datasets/dataset_learned_top30.csv" parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, default=default_model_path, help="path of the model for which the language embeddings should be modified") parser.add_argument("--dataset_path", type=str, default=default_csv_path, help="path to distance dataset CSV") parser.add_argument("--min_n_langs", type=int, default=5, help="minimum amount of languages used for averaging") parser.add_argument("--max_n_langs", type=int, default=25, help="maximum amount of languages used for averaging") parser.add_argument("--threshold_percentile", type=int, default=50, help="percentile of the furthest used languages \ used as cutoff threshold (no langs >= the threshold are used for averaging)") args = parser.parse_args() ISO_LOOKUP_PATH = "iso_lookup.json" with open(ISO_LOOKUP_PATH, "r") as f: iso_lookup = json.load(f) # iso_lookup[-1] = iso2id mapping # load language distance dataset distance_df = pd.read_csv(args.dataset_path, sep="|") approximate_and_inject_language_embeddings(model_path=args.model_path, df=distance_df, iso_lookup=iso_lookup, min_n_langs=args.min_n_langs, max_n_langs=args.max_n_langs, threshold_percentile=args.threshold_percentile)