import os import random import librosa import soundfile as sf import torch from speechbrain.pretrained import EncoderClassifier from torch.multiprocessing import Manager from torch.multiprocessing import Process from torch.utils.data import Dataset from torchaudio.transforms import Resample from tqdm import tqdm from Preprocessing.EnCodecAudioPreprocessor import CodecAudioPreprocessor from Preprocessing.TextFrontend import ArticulatoryCombinedTextFrontend from Utility.storage_config import MODELS_DIR class CodecAlignerDataset(Dataset): def __init__(self, path_to_transcript_dict, cache_dir, lang, loading_processes, device, min_len_in_seconds=1, max_len_in_seconds=15, rebuild_cache=False, verbose=False, phone_input=False, allow_unknown_symbols=False, gpu_count=1, rank=0): self.gpu_count = gpu_count self.rank = rank if not os.path.exists(os.path.join(cache_dir, "aligner_train_cache.pt")) or rebuild_cache: self._build_dataset_cache(path_to_transcript_dict=path_to_transcript_dict, cache_dir=cache_dir, lang=lang, loading_processes=loading_processes, device=device, min_len_in_seconds=min_len_in_seconds, max_len_in_seconds=max_len_in_seconds, verbose=verbose, phone_input=phone_input, allow_unknown_symbols=allow_unknown_symbols, gpu_count=gpu_count, rank=rank) self.lang = lang self.device = device self.cache_dir = cache_dir self.tf = ArticulatoryCombinedTextFrontend(language=self.lang) cache = torch.load(os.path.join(self.cache_dir, "aligner_train_cache.pt"), map_location='cpu') self.speaker_embeddings = cache[2] self.datapoints = cache[0] if self.gpu_count > 1: # we only keep a chunk of the dataset in memory to avoid redundancy. Which chunk, we figure out using the rank. while len(self.datapoints) % self.gpu_count != 0: self.datapoints.pop(-1) # a bit unfortunate, but if you're using multiple GPUs, you probably have a ton of datapoints anyway. chunksize = int(len(self.datapoints) / self.gpu_count) self.datapoints = self.datapoints[chunksize * self.rank:chunksize * (self.rank + 1)] self.speaker_embeddings = self.speaker_embeddings[chunksize * self.rank:chunksize * (self.rank + 1)] print(f"Loaded an Aligner dataset with {len(self.datapoints)} datapoints from {cache_dir}.") def _build_dataset_cache(self, path_to_transcript_dict, cache_dir, lang, loading_processes, device, min_len_in_seconds=1, max_len_in_seconds=15, verbose=False, phone_input=False, allow_unknown_symbols=False, gpu_count=1, rank=0 ): if gpu_count != 1: import sys print("Please run the feature extraction using only a single GPU. Multi-GPU is only supported for training.") sys.exit() os.makedirs(cache_dir, exist_ok=True) if type(path_to_transcript_dict) != dict: path_to_transcript_dict = path_to_transcript_dict() # in this case we passed a function instead of the dict, so that the function isn't executed if not necessary. torch.multiprocessing.set_start_method('spawn', force=True) resource_manager = Manager() self.path_to_transcript_dict = resource_manager.dict(path_to_transcript_dict) key_list = list(self.path_to_transcript_dict.keys()) with open(os.path.join(cache_dir, "files_used.txt"), encoding='utf8', mode="w") as files_used_note: files_used_note.write(str(key_list)) fisher_yates_shuffle(key_list) # build cache print("... building dataset cache ...") self.result_pool = resource_manager.list() # make processes key_splits = list() process_list = list() for i in range(loading_processes): key_splits.append( key_list[i * len(key_list) // loading_processes:(i + 1) * len(key_list) // loading_processes]) for key_split in key_splits: process_list.append( Process(target=self._cache_builder_process, args=(key_split, lang, min_len_in_seconds, max_len_in_seconds, verbose, device, phone_input, allow_unknown_symbols), daemon=True)) process_list[-1].start() for process in process_list: process.join() print("pooling results...") pooled_datapoints = list() for chunk in self.result_pool: for datapoint in chunk: pooled_datapoints.append(datapoint) # unpack into a joint list self.result_pool = pooled_datapoints del pooled_datapoints print("converting text to tensors...") text_tensors = [torch.ShortTensor(x[0]) for x in self.result_pool] # turn everything back to tensors (had to turn it to np arrays to avoid multiprocessing issues) print("converting speech to tensors...") speech_tensors = [torch.ShortTensor(x[1]) for x in self.result_pool] print("converting waves to tensors...") norm_waves = [torch.Tensor(x[2]) for x in self.result_pool] print("unpacking file list...") filepaths = [x[3] for x in self.result_pool] del self.result_pool self.datapoints = list(zip(text_tensors, speech_tensors)) del text_tensors del speech_tensors print("done!") # add speaker embeddings self.speaker_embeddings = list() speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", run_opts={"device": str(device)}, savedir=os.path.join(MODELS_DIR, "Embedding", "speechbrain_speaker_embedding_ecapa")) with torch.inference_mode(): for wave in tqdm(norm_waves): self.speaker_embeddings.append(speaker_embedding_func_ecapa.encode_batch(wavs=wave.to(device).unsqueeze(0)).squeeze().cpu()) # save to cache if len(self.datapoints) == 0: raise RuntimeError # something went wrong and there are no datapoints torch.save((self.datapoints, None, self.speaker_embeddings, filepaths), os.path.join(cache_dir, "aligner_train_cache.pt")) def _cache_builder_process(self, path_list, lang, min_len, max_len, verbose, device, phone_input, allow_unknown_symbols): process_internal_dataset_chunk = list() torch.hub._validate_not_a_forked_repo = lambda a, b, c: True # torch 1.9 has a bug in the hub loading, this is a workaround # careful: assumes 16kHz or 8kHz audio silero_model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_vad', force_reload=False, onnx=False, verbose=False) (get_speech_timestamps, save_audio, read_audio, VADIterator, collect_chunks) = utils torch.set_grad_enabled(True) # finding this issue was very infuriating: silero sets # this to false globally during model loading rather than using inference mode or no_grad silero_model = silero_model.to(device) silence = torch.zeros([16000 // 4], device=device) tf = ArticulatoryCombinedTextFrontend(language=lang) _, sr = sf.read(path_list[0]) assumed_sr = sr ap = CodecAudioPreprocessor(input_sr=assumed_sr, device=device) resample = Resample(orig_freq=assumed_sr, new_freq=16000).to(device) for path in tqdm(path_list): if self.path_to_transcript_dict[path].strip() == "": continue try: wave, sr = sf.read(path) except: print(f"Problem with an audio file: {path}") continue wave = librosa.to_mono(wave) if sr != assumed_sr: assumed_sr = sr ap = CodecAudioPreprocessor(input_sr=assumed_sr, device=device) resample = Resample(orig_freq=assumed_sr, new_freq=16000).to(device) print(f"{path} has a different sampling rate --> adapting the codec processor") try: norm_wave = resample(torch.tensor(wave).float().to(device)) except ValueError: continue dur_in_seconds = len(norm_wave) / 16000 if not (min_len <= dur_in_seconds <= max_len): if verbose: print(f"Excluding {path} because of its duration of {round(dur_in_seconds, 2)} seconds.") continue # remove silences from front and back, then add constant 1/4th second silences back to front and back with torch.no_grad(): speech_timestamps = get_speech_timestamps(norm_wave, silero_model, sampling_rate=16000) try: result = norm_wave[speech_timestamps[0]['start']:speech_timestamps[-1]['end']] except IndexError: print("Audio might be too short to cut silences from front and back.") continue wave = torch.cat([silence, result, silence]) # raw audio preprocessing is done transcript = self.path_to_transcript_dict[path] try: try: cached_text = tf.string_to_tensor(transcript, handle_missing=False, input_phonemes=phone_input).squeeze(0).cpu().numpy() except KeyError: cached_text = tf.string_to_tensor(transcript, handle_missing=True, input_phonemes=phone_input).squeeze(0).cpu().numpy() if not allow_unknown_symbols: continue # we skip sentences with unknown symbols except ValueError: # this can happen for Mandarin Chinese, when the syllabification of pinyin doesn't work. In that case, we just skip the sample. continue except KeyError: # this can happen for Mandarin Chinese, when the syllabification of pinyin doesn't work. In that case, we just skip the sample. continue cached_speech = ap.audio_to_codebook_indexes(audio=wave, current_sampling_rate=16000).transpose(0, 1).cpu().numpy() process_internal_dataset_chunk.append([cached_text, cached_speech, result.cpu().detach().numpy(), path]) self.result_pool.append(process_internal_dataset_chunk) def __getitem__(self, index): text_vector = self.datapoints[index][0] tokens = self.tf.text_vectors_to_id_sequence(text_vector=text_vector) tokens = torch.LongTensor(tokens) token_len = torch.LongTensor([len(tokens)]) codes = self.datapoints[index][1] if codes.size()[0] != 24: # no clue why this is sometimes the case codes = codes.transpose(0, 1) return tokens, \ token_len, \ codes, \ None, \ self.speaker_embeddings[index] def __len__(self): return len(self.datapoints) def fisher_yates_shuffle(lst): for i in range(len(lst) - 1, 0, -1): j = random.randint(0, i) lst[i], lst[j] = lst[j], lst[i]