import os import torch import torch.multiprocessing from speechbrain.pretrained import EncoderClassifier from torchaudio.transforms import Resample from Architectures.EmbeddingModel.StyleEmbedding import StyleEmbedding from Preprocessing.HiFiCodecAudioPreprocessor import CodecAudioPreprocessor from Utility.storage_config import MODELS_DIR class ProsodicConditionExtractor: def __init__(self, device=torch.device("cpu"), path_to_model=os.path.join(MODELS_DIR, "Embedding", "embedding_function.pt")): self.ap = CodecAudioPreprocessor(input_sr=100, output_sr=2) self.embed = StyleEmbedding() check_dict = torch.load(path_to_model, map_location="cpu") self.embed.load_state_dict(check_dict["style_emb_func"]) self.speaker_embedding_func_ecapa = EncoderClassifier.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb", run_opts={"device": str(device)}, savedir=os.path.join(MODELS_DIR, "Embedding", "speechbrain_speaker_embedding_ecapa")) self.embed.to(device) self.device = device def extract_condition_from_reference_wave(self, wave, sr): wave_24khz = Resample(orig_freq=sr, new_freq=24000).to(self.device)(torch.tensor(wave, device=self.device, dtype=torch.float32)) spec = self.ap.audio_to_codec_tensor(wave_24khz, current_sampling_rate=24000).transpose(0, 1) spec_len = torch.LongTensor([len(spec)]) style_embedding = self.embed(spec.unsqueeze(0).to(self.device), spec_len.unsqueeze(0).to(self.device)).squeeze() wave_16kHz = Resample(orig_freq=sr, new_freq=16000).to(self.device)(torch.tensor(wave, device=self.device, dtype=torch.float32)) speaker_embedding = self.speaker_embedding_func_ecapa.encode_batch(wavs=wave_16kHz.to(self.device).unsqueeze(0)).squeeze() return torch.cat([style_embedding, speaker_embedding], dim=-1)