# Copyright 2021 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) # Adapted by Florian Lux 2021 # This code is based on https://github.com/jik876/hifi-gan. import copy import torch import torch.nn.functional as F from Architectures.Vocoder.Avocodo_Discriminators import MultiCoMBDiscriminator from Architectures.Vocoder.Avocodo_Discriminators import MultiSubBandDiscriminator from Architectures.Vocoder.SAN_modules import SANConv1d from Architectures.Vocoder.SAN_modules import SANConv2d class HiFiGANPeriodDiscriminator(torch.nn.Module): def __init__(self, in_channels=1, out_channels=1, period=3, kernel_sizes=(5, 3), channels=32, downsample_scales=(3, 3, 3, 3, 1), max_downsample_channels=1024, bias=True, nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.1}, use_weight_norm=True, use_spectral_norm=False, ): """ Initialize HiFiGANPeriodDiscriminator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. period (int): Period. kernel_sizes (list): Kernel sizes of initial conv layers and the final conv layer. channels (int): Number of initial channels. downsample_scales (list): List of downsampling scales. max_downsample_channels (int): Number of maximum downsampling channels. bias (bool): Whether to add bias parameter in convolution layers. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_spectral_norm (bool): Whether to use spectral norm. If set to true, it will be applied to all of the conv layers. """ super().__init__() assert len(kernel_sizes) == 2 assert kernel_sizes[0] % 2 == 1, "Kernel size must be odd number." assert kernel_sizes[1] % 2 == 1, "Kernel size must be odd number." self.period = period self.convs = torch.nn.ModuleList() in_chs = in_channels out_chs = channels for downsample_scale in downsample_scales: self.convs += [torch.nn.Sequential(torch.nn.Conv2d(in_chs, out_chs, (kernel_sizes[0], 1), (downsample_scale, 1), padding=((kernel_sizes[0] - 1) // 2, 0), ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), )] in_chs = out_chs # NOTE(kan-bayashi): Use downsample_scale + 1? out_chs = min(out_chs * 4, max_downsample_channels) self.output_conv = SANConv2d(out_chs, out_channels, (kernel_sizes[1] - 1, 1), 1, padding=((kernel_sizes[1] - 1) // 2, 0)) if use_weight_norm and use_spectral_norm: raise ValueError("Either use use_weight_norm or use_spectral_norm.") # apply weight norm if use_weight_norm: self.apply_weight_norm() # apply spectral norm if use_spectral_norm: self.apply_spectral_norm() def forward(self, x, discriminator_train_flag): """ Calculate forward propagation. Args: x (Tensor): Input tensor (B, in_channels, T). Returns: list: List of each layer's tensors. """ # transform 1d to 2d -> (B, C, T/P, P) b, c, t = x.shape if t % self.period != 0: n_pad = self.period - (t % self.period) x = F.pad(x, (0, n_pad), "reflect") t = t + n_pad x = x.view(b, c, t // self.period, self.period) # forward conv outs = [] for layer in self.convs: x = layer(x) outs = outs + [x] x = self.output_conv(x, discriminator_train_flag) return x, outs def apply_weight_norm(self): """ Apply weight normalization module from all of the layers. """ def _apply_weight_norm(m): if isinstance(m, torch.nn.Conv2d): torch.nn.utils.weight_norm(m) self.apply(_apply_weight_norm) def apply_spectral_norm(self): """ Apply spectral normalization module from all of the layers. """ def _apply_spectral_norm(m): if isinstance(m, torch.nn.Conv2d): torch.nn.utils.spectral_norm(m) self.apply(_apply_spectral_norm) class HiFiGANMultiPeriodDiscriminator(torch.nn.Module): def __init__(self, periods=(2, 3, 5, 7, 11), discriminator_params={"in_channels" : 1, "out_channels" : 1, "kernel_sizes" : [5, 3], "channels" : 32, "downsample_scales" : [3, 3, 3, 3, 1], "max_downsample_channels" : 1024, "bias" : True, "nonlinear_activation" : "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, "use_weight_norm" : True, "use_spectral_norm" : False, }, ): """ Initialize HiFiGANMultiPeriodDiscriminator module. Args: periods (list): List of periods. discriminator_params (dict): Parameters for hifi-gan period discriminator module. The period parameter will be overwritten. """ super().__init__() self.discriminators = torch.nn.ModuleList() for period in periods: params = copy.deepcopy(discriminator_params) params["period"] = period self.discriminators += [HiFiGANPeriodDiscriminator(**params)] def forward(self, x, discriminator_train_flag): """Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List: List of list of each discriminator outputs, which consists of each layer output tensors. """ outs = [] feats = [] for f in self.discriminators: d_out, d_feats = f(x, discriminator_train_flag) outs = outs + [d_out] feats = feats + d_feats return outs, feats class HiFiGANScaleDiscriminator(torch.nn.Module): def __init__(self, in_channels=1, out_channels=1, kernel_sizes=(15, 41, 5, 3), channels=128, max_downsample_channels=1024, max_groups=16, bias=True, downsample_scales=(2, 2, 4, 4, 1), nonlinear_activation="LeakyReLU", nonlinear_activation_params={"negative_slope": 0.1}, use_weight_norm=True, use_spectral_norm=False, ): """ Initialize HiFiGAN scale discriminator module. Args: in_channels (int): Number of input channels. out_channels (int): Number of output channels. kernel_sizes (list): List of four kernel sizes. The first will be used for the first conv layer, and the second is for downsampling part, and the remaining two are for output layers. channels (int): Initial number of channels for conv layer. max_downsample_channels (int): Maximum number of channels for downsampling layers. bias (bool): Whether to add bias parameter in convolution layers. downsample_scales (list): List of downsampling scales. nonlinear_activation (str): Activation function module name. nonlinear_activation_params (dict): Hyperparameters for activation function. use_weight_norm (bool): Whether to use weight norm. If set to true, it will be applied to all of the conv layers. use_spectral_norm (bool): Whether to use spectral norm. If set to true, it will be applied to all of the conv layers. """ super().__init__() self.layers = torch.nn.ModuleList() # check kernel size is valid assert len(kernel_sizes) == 4 for ks in kernel_sizes: assert ks % 2 == 1 # add first layer self.layers += [torch.nn.Sequential(torch.nn.Conv1d(in_channels, channels, # NOTE(kan-bayashi): Use always the same kernel size kernel_sizes[0], bias=bias, padding=(kernel_sizes[0] - 1) // 2, ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), )] # add downsample layers in_chs = channels out_chs = channels # NOTE(kan-bayashi): Remove hard coding? groups = 4 for downsample_scale in downsample_scales: self.layers += [torch.nn.Sequential(torch.nn.Conv1d(in_chs, out_chs, kernel_size=kernel_sizes[1], stride=downsample_scale, padding=(kernel_sizes[1] - 1) // 2, groups=groups, bias=bias, ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), )] in_chs = out_chs # NOTE(kan-bayashi): Remove hard coding? out_chs = min(in_chs * 2, max_downsample_channels) # NOTE(kan-bayashi): Remove hard coding? groups = min(groups * 4, max_groups) # add final layers out_chs = min(in_chs * 2, max_downsample_channels) self.layers += [torch.nn.Sequential(torch.nn.Conv1d(in_chs, out_chs, kernel_size=kernel_sizes[2], stride=1, padding=(kernel_sizes[2] - 1) // 2, bias=bias, ), getattr(torch.nn, nonlinear_activation)(**nonlinear_activation_params), )] self.post_conv = SANConv1d(out_chs, out_channels, kernel_sizes[3], padding=(kernel_sizes[3] - 1) // 2) if use_weight_norm and use_spectral_norm: raise ValueError("Either use use_weight_norm or use_spectral_norm.") # apply weight norm if use_weight_norm: self.apply_weight_norm() # apply spectral norm if use_spectral_norm: self.apply_spectral_norm() def forward(self, x, discriminator_train_flag): """ Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List: List of output tensors of each layer. """ outs = [] for f in self.layers: x = f(x) outs = outs + [x] x = self.post_conv(x, discriminator_train_flag) return x, outs def apply_weight_norm(self): """ Apply weight normalization module from all of the layers. """ def _apply_weight_norm(m): if isinstance(m, torch.nn.Conv2d): torch.nn.utils.weight_norm(m) self.apply(_apply_weight_norm) def apply_spectral_norm(self): """ Apply spectral normalization module from all of the layers. """ def _apply_spectral_norm(m): if isinstance(m, torch.nn.Conv2d): torch.nn.utils.spectral_norm(m) self.apply(_apply_spectral_norm) class HiFiGANMultiScaleDiscriminator(torch.nn.Module): def __init__(self, scales=3, downsample_pooling="AvgPool1d", # follow the official implementation setting downsample_pooling_params={"kernel_size": 4, "stride" : 2, "padding" : 2, }, discriminator_params={"in_channels" : 1, "out_channels" : 1, "kernel_sizes" : [15, 41, 5, 3], "channels" : 128, "max_downsample_channels" : 1024, "max_groups" : 16, "bias" : True, "downsample_scales" : [2, 2, 4, 4, 1], "nonlinear_activation" : "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, }, follow_official_norm=False, ): """ Initialize HiFiGAN multi-scale discriminator module. Args: scales (int): Number of multi-scales. downsample_pooling (str): Pooling module name for downsampling of the inputs. downsample_pooling_params (dict): Parameters for the above pooling module. discriminator_params (dict): Parameters for hifi-gan scale discriminator module. follow_official_norm (bool): Whether to follow the norm setting of the official implementaion. The first discriminator uses spectral norm and the other discriminators use weight norm. """ super().__init__() self.discriminators = torch.nn.ModuleList() # add discriminators for i in range(scales): params = copy.deepcopy(discriminator_params) if follow_official_norm: if i == 0: params["use_weight_norm"] = False params["use_spectral_norm"] = True else: params["use_weight_norm"] = True params["use_spectral_norm"] = False self.discriminators += [HiFiGANScaleDiscriminator(**params)] self.pooling = getattr(torch.nn, downsample_pooling)(**downsample_pooling_params) def forward(self, x, discriminator_train_flag): """ Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List: List of list of each discriminator outputs, which consists of each layer output tensors. """ outs = [] feats = [] for f in self.discriminators: out, d_feats = f(x, discriminator_train_flag) feats = feats + d_feats outs = outs + [out] x = self.pooling(x) return outs, feats class HiFiGANMultiScaleMultiPeriodDiscriminator(torch.nn.Module): def __init__(self, # Multi-scale discriminator related scales=3, scale_downsample_pooling="AvgPool1d", scale_downsample_pooling_params={"kernel_size": 4, "stride" : 2, "padding" : 2, }, scale_discriminator_params={"in_channels" : 1, "out_channels" : 1, "kernel_sizes" : [15, 41, 5, 3], "channels" : 128, "max_downsample_channels" : 1024, "max_groups" : 16, "bias" : True, "downsample_scales" : [4, 4, 4, 4, 1], "nonlinear_activation" : "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, }, follow_official_norm=True, # Multi-period discriminator related periods=[2, 3, 5, 7, 11], period_discriminator_params={"in_channels" : 1, "out_channels" : 1, "kernel_sizes" : [5, 3], "channels" : 32, "downsample_scales" : [3, 3, 3, 3, 1], "max_downsample_channels" : 1024, "bias" : True, "nonlinear_activation" : "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, "use_weight_norm" : True, "use_spectral_norm" : False, }, ): """ Initialize HiFiGAN multi-scale + multi-period discriminator module. Args: scales (int): Number of multi-scales. scale_downsample_pooling (str): Pooling module name for downsampling of the inputs. scale_downsample_pooling_params (dict): Parameters for the above pooling module. scale_discriminator_params (dict): Parameters for hifi-gan scale discriminator module. follow_official_norm (bool): Whether to follow the norm setting of the official implementaion. The first discriminator uses spectral norm and the other discriminators use weight norm. periods (list): List of periods. period_discriminator_params (dict): Parameters for hifi-gan period discriminator module. The period parameter will be overwritten. """ super().__init__() self.msd = HiFiGANMultiScaleDiscriminator(scales=scales, downsample_pooling=scale_downsample_pooling, downsample_pooling_params=scale_downsample_pooling_params, discriminator_params=scale_discriminator_params, follow_official_norm=follow_official_norm, ) self.mpd = HiFiGANMultiPeriodDiscriminator(periods=periods, discriminator_params=period_discriminator_params, ) def forward(self, x): """ Calculate forward propagation. Args: x (Tensor): Input noise signal (B, 1, T). Returns: List: List of list of each discriminator outputs, which consists of each layer output tensors. Multi scale and multi period ones are concatenated. """ msd_outs = self.msd(x) mpd_outs = self.mpd(x) return msd_outs + mpd_outs class AvocodoHiFiGANJointDiscriminator(torch.nn.Module): def __init__(self, # Multi-scale discriminator related scales=3, scale_downsample_pooling="AvgPool1d", scale_downsample_pooling_params={"kernel_size": 4, "stride" : 2, "padding" : 2, }, scale_discriminator_params={"in_channels" : 1, "out_channels" : 1, "kernel_sizes" : [15, 41, 5, 3], "channels" : 128, "max_downsample_channels" : 1024, "max_groups" : 16, "bias" : True, "downsample_scales" : [4, 4, 4, 4, 1], "nonlinear_activation" : "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, }, follow_official_norm=True, # Multi-period discriminator related periods=(2, 3, 5, 7, 11), period_discriminator_params={"in_channels" : 1, "out_channels" : 1, "kernel_sizes" : [5, 3], "channels" : 32, "downsample_scales" : [3, 3, 3, 3, 1], "max_downsample_channels" : 1024, "bias" : True, "nonlinear_activation" : "LeakyReLU", "nonlinear_activation_params": {"negative_slope": 0.1}, "use_weight_norm" : True, "use_spectral_norm" : False, }, # CoMB discriminator related kernels=((7, 11, 11, 11, 11, 5), (11, 21, 21, 21, 21, 5), (15, 41, 41, 41, 41, 5)), channels=(16, 64, 256, 1024, 1024, 1024), groups=(1, 4, 16, 64, 256, 1), strides=(1, 1, 4, 4, 4, 1), # Sub-Band discriminator related tkernels=(7, 5, 3), fkernel=5, tchannels=(64, 128, 256, 256, 256), fchannels=(32, 64, 128, 128, 128), tstrides=((1, 1, 3, 3, 1), (1, 1, 3, 3, 1), (1, 1, 3, 3, 1)), fstride=(1, 1, 3, 3, 1), tdilations=(((5, 7, 11), (5, 7, 11), (5, 7, 11), (5, 7, 11), (5, 7, 11), (5, 7, 11)), ((3, 5, 7), (3, 5, 7), (3, 5, 7), (3, 5, 7), (3, 5, 7)), ((1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 2, 3), (1, 2, 3))), fdilations=((1, 2, 3), (1, 2, 3), (1, 2, 3), (2, 3, 5), (2, 3, 5)), tsubband=(6, 11, 16), n=16, m=64, freq_init_ch=192): super().__init__() self.msd = HiFiGANMultiScaleDiscriminator(scales=scales, downsample_pooling=scale_downsample_pooling, downsample_pooling_params=scale_downsample_pooling_params, discriminator_params=scale_discriminator_params, follow_official_norm=follow_official_norm, ) self.mpd = HiFiGANMultiPeriodDiscriminator(periods=periods, discriminator_params=period_discriminator_params, ) self.mcmbd = MultiCoMBDiscriminator(kernels, channels, groups, strides) self.msbd = MultiSubBandDiscriminator(tkernels, fkernel, tchannels, fchannels, tstrides, fstride, tdilations, fdilations, tsubband, n, m, freq_init_ch) def forward(self, wave, intermediate_wave_upsampled_twice=None, intermediate_wave_upsampled_once=None, discriminator_train_flag=False): """ Calculate forward propagation. Args: wave: The predicted or gold waveform intermediate_wave_upsampled_twice: the wave before the final upsampling in the generator intermediate_wave_upsampled_once: the wave before the second final upsampling in the generator Returns: List: List of lists of each discriminator outputs, which consists of each layer's output tensors. """ msd_outs, msd_feats = self.msd(wave, discriminator_train_flag) mpd_outs, mpd_feats = self.mpd(wave, discriminator_train_flag) mcmbd_outs, mcmbd_feats = self.mcmbd(wave_final=wave, intermediate_wave_upsampled_twice=intermediate_wave_upsampled_twice, intermediate_wave_upsampled_once=intermediate_wave_upsampled_once, discriminator_train_flag=discriminator_train_flag) msbd_outs, msbd_feats = self.msbd(wave, discriminator_train_flag) return msd_outs + mpd_outs + mcmbd_outs + msbd_outs, msd_feats + mpd_feats + mcmbd_feats + msbd_feats