import torch import torch.multiprocessing from torch.nn.utils.rnn import pack_padded_sequence from torch.nn.utils.rnn import pad_packed_sequence from Utility.utils import make_non_pad_mask class Reconstructor(torch.nn.Module): def __init__(self, n_features=128, num_symbols=145, speaker_embedding_dim=192, lstm_dim=256): super().__init__() self.in_proj = torch.nn.Linear(num_symbols + speaker_embedding_dim, lstm_dim) self.rnn1 = torch.nn.LSTM(lstm_dim, lstm_dim, batch_first=True, bidirectional=True) self.rnn2 = torch.nn.LSTM(2 * lstm_dim, lstm_dim, batch_first=True, bidirectional=True) self.out_proj = torch.nn.Linear(2 * lstm_dim, n_features) self.l1_criterion = torch.nn.L1Loss(reduction="none") self.l2_criterion = torch.nn.MSELoss(reduction="none") def forward(self, x, lens, ys): x = self.in_proj(x) x = pack_padded_sequence(x, lens.cpu(), batch_first=True, enforce_sorted=False) x, _ = self.rnn1(x) x, _ = self.rnn2(x) x, _ = pad_packed_sequence(x, batch_first=True) x = self.out_proj(x) out_masks = make_non_pad_mask(lens).unsqueeze(-1).to(ys.device) out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float() out_weights /= ys.size(0) * ys.size(2) l1_loss = self.l1_criterion(x, ys).mul(out_weights).masked_select(out_masks).sum() l2_loss = self.l2_criterion(x, ys).mul(out_weights).masked_select(out_masks).sum() return l1_loss + l2_loss if __name__ == '__main__': print(sum(p.numel() for p in Reconstructor().parameters() if p.requires_grad))