""" Code taken and adapted from https://github.com/jaywalnut310/vits MIT License Copyright (c) 2021 Jaehyeon Kim Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import math import numpy as np import torch from torch import nn from torch.nn import functional as F DEFAULT_MIN_BIN_WIDTH = 1e-3 DEFAULT_MIN_BIN_HEIGHT = 1e-3 DEFAULT_MIN_DERIVATIVE = 1e-3 class StochasticVariancePredictor(nn.Module): def __init__(self, in_channels, kernel_size, p_dropout, n_flows=4, conditioning_signal_channels=0): super().__init__() self.in_channels = in_channels self.filter_channels = in_channels self.kernel_size = kernel_size self.p_dropout = p_dropout self.n_flows = n_flows self.gin_channels = conditioning_signal_channels if conditioning_signal_channels is not None else 0 self.log_flow = Log() self.flows = nn.ModuleList() self.flows.append(ElementwiseAffine(2)) for i in range(n_flows): self.flows.append(ConvFlow(2, in_channels, kernel_size, n_layers=3)) self.flows.append(Flip()) self.post_pre = nn.Conv1d(1, in_channels, 1) self.post_proj = nn.Conv1d(in_channels, in_channels, 1) self.post_convs = DDSConv(in_channels, kernel_size, n_layers=3, p_dropout=p_dropout) self.post_flows = nn.ModuleList() self.post_flows.append(ElementwiseAffine(2)) for i in range(4): self.post_flows.append(ConvFlow(2, in_channels, kernel_size, n_layers=3)) self.post_flows.append(Flip()) self.pre = nn.Conv1d(in_channels, in_channels, 1) self.proj = nn.Conv1d(in_channels, in_channels, 1) self.convs = DDSConv(in_channels, kernel_size, n_layers=3, p_dropout=p_dropout) if self.gin_channels != 0: self.cond = nn.Conv1d(self.gin_channels, in_channels, 1) def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=0.3): x = self.pre(x) if g is not None: g = torch.detach(g) x = x + self.cond(g) x = self.convs(x, x_mask) x = self.proj(x) * x_mask if not reverse: flows = self.flows assert w is not None logdet_tot_q = 0 h_w = self.post_pre(w) h_w = self.post_convs(h_w, x_mask) h_w = self.post_proj(h_w) * x_mask e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask z_q = e_q for flow in self.post_flows: z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) logdet_tot_q += logdet_q z_u, z1 = torch.split(z_q, [1, 1], 1) u = torch.sigmoid(z_u) * x_mask z0 = (w - u) * x_mask logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q ** 2)) * x_mask, [1, 2]) - logdet_tot_q logdet_tot = 0 z0, logdet = self.log_flow(z0, x_mask) logdet_tot += logdet z = torch.cat([z0, z1], 1) for flow in flows: z, logdet = flow(z, x_mask, g=x, reverse=reverse) logdet_tot = logdet_tot + logdet nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z ** 2)) * x_mask, [1, 2]) - logdet_tot return nll + logq # [b] else: flows = list(reversed(self.flows)) flows = flows[:-2] + [flows[-1]] # remove a useless vflow z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale # noise scale 0.8 derived from coqui implementation, but dropped to 0.3 during testing. Might not be ideal yet. for flow in flows: z = flow(z, x_mask, g=x, reverse=reverse) z0, z1 = torch.split(z, [1, 1], 1) logw = z0 return logw class Log(nn.Module): def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = torch.log(torch.clamp_min(x, 1e-6)) * x_mask logdet = torch.sum(-y, [1, 2]) return y, logdet else: x = torch.exp(x) * x_mask return x class Flip(nn.Module): def forward(self, x, *args, reverse=False, **kwargs): x = torch.flip(x, [1]) if not reverse: logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) return x, logdet else: return x class DDSConv(nn.Module): """ Dialted and Depth-Separable Convolution """ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.): super().__init__() self.channels = channels self.kernel_size = kernel_size self.n_layers = n_layers self.p_dropout = p_dropout self.drop = nn.Dropout(p_dropout) self.convs_sep = nn.ModuleList() self.convs_1x1 = nn.ModuleList() self.norms_1 = nn.ModuleList() self.norms_2 = nn.ModuleList() for i in range(n_layers): dilation = kernel_size ** i padding = (kernel_size * dilation - dilation) // 2 self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding )) self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) self.norms_1.append(LayerNorm(channels)) self.norms_2.append(LayerNorm(channels)) def forward(self, x, x_mask, g=None): if g is not None: x = x + g for i in range(self.n_layers): y = self.convs_sep[i](x * x_mask) y = self.norms_1[i](y) y = F.gelu(y) y = self.convs_1x1[i](y) y = self.norms_2[i](y) y = F.gelu(y) y = self.drop(y) x = x + y return x * x_mask class ConvFlow(nn.Module): def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0): super().__init__() self.in_channels = in_channels self.filter_channels = filter_channels self.kernel_size = kernel_size self.n_layers = n_layers self.num_bins = num_bins self.tail_bound = tail_bound self.half_channels = in_channels // 2 self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.) self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1) self.proj.weight.data.zero_() self.proj.bias.data.zero_() def forward(self, x, x_mask, g=None, reverse=False): x0, x1 = torch.split(x, [self.half_channels] * 2, 1) h = self.pre(x0) h = self.convs(h, x_mask, g=g) h = self.proj(h) * x_mask b, c, t = x0.shape h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels) unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / math.sqrt(self.filter_channels) unnormalized_derivatives = h[..., 2 * self.num_bins:] x1, logabsdet = piecewise_rational_quadratic_transform(x1, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=reverse, tails='linear', tail_bound=self.tail_bound ) x = torch.cat([x0, x1], 1) * x_mask logdet = torch.sum(logabsdet * x_mask, [1, 2]) if not reverse: return x, logdet else: return x class ElementwiseAffine(nn.Module): def __init__(self, channels): super().__init__() self.channels = channels self.m = nn.Parameter(torch.zeros(channels, 1)) self.logs = nn.Parameter(torch.zeros(channels, 1)) def forward(self, x, x_mask, reverse=False, **kwargs): if not reverse: y = self.m + torch.exp(self.logs) * x y = y * x_mask logdet = torch.sum(self.logs * x_mask, [1, 2]) return y, logdet else: x = (x - self.m) * torch.exp(-self.logs) * x_mask return x class LayerNorm(nn.Module): def __init__(self, channels, eps=1e-5): super().__init__() self.channels = channels self.eps = eps self.gamma = nn.Parameter(torch.ones(channels)) self.beta = nn.Parameter(torch.zeros(channels)) def forward(self, x): x = x.transpose(1, -1) x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) return x.transpose(1, -1) def piecewise_rational_quadratic_transform(inputs, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=False, tails=None, tail_bound=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE): if tails is None: spline_fn = rational_quadratic_spline spline_kwargs = {} else: spline_fn = unconstrained_rational_quadratic_spline spline_kwargs = { 'tails' : tails, 'tail_bound': tail_bound } outputs, logabsdet = spline_fn( inputs=inputs, unnormalized_widths=unnormalized_widths, unnormalized_heights=unnormalized_heights, unnormalized_derivatives=unnormalized_derivatives, inverse=inverse, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative, **spline_kwargs ) return outputs, logabsdet def rational_quadratic_spline(inputs, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=False, left=0., right=1., bottom=0., top=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE): if torch.min(inputs) < left or torch.max(inputs) > right: raise ValueError('Input to a transform is not within its domain') num_bins = unnormalized_widths.shape[-1] if min_bin_width * num_bins > 1.0: raise ValueError('Minimal bin width too large for the number of bins') if min_bin_height * num_bins > 1.0: raise ValueError('Minimal bin height too large for the number of bins') widths = F.softmax(unnormalized_widths, dim=-1) widths = min_bin_width + (1 - min_bin_width * num_bins) * widths cumwidths = torch.cumsum(widths, dim=-1) cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0) cumwidths = (right - left) * cumwidths + left cumwidths[..., 0] = left cumwidths[..., -1] = right widths = cumwidths[..., 1:] - cumwidths[..., :-1] derivatives = min_derivative + F.softplus(unnormalized_derivatives) heights = F.softmax(unnormalized_heights, dim=-1) heights = min_bin_height + (1 - min_bin_height * num_bins) * heights cumheights = torch.cumsum(heights, dim=-1) cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0) cumheights = (top - bottom) * cumheights + bottom cumheights[..., 0] = bottom cumheights[..., -1] = top heights = cumheights[..., 1:] - cumheights[..., :-1] if inverse: bin_idx = searchsorted(cumheights, inputs)[..., None] else: bin_idx = searchsorted(cumwidths, inputs)[..., None] input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] input_bin_widths = widths.gather(-1, bin_idx)[..., 0] input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] delta = heights / widths input_delta = delta.gather(-1, bin_idx)[..., 0] input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] input_heights = heights.gather(-1, bin_idx)[..., 0] if inverse: a = (((inputs - input_cumheights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta) + input_heights * (input_delta - input_derivatives))) b = (input_heights * input_derivatives - (inputs - input_cumheights) * (input_derivatives + input_derivatives_plus_one - 2 * input_delta)) c = - input_delta * (inputs - input_cumheights) discriminant = b.pow(2) - 4 * a * c assert (discriminant >= 0).all() root = (2 * c) / (-b - torch.sqrt(discriminant)) outputs = root * input_bin_widths + input_cumwidths theta_one_minus_theta = root * (1 - root) denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta) derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - root).pow(2)) logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) return outputs, -logabsdet else: theta = (inputs - input_cumwidths) / input_bin_widths theta_one_minus_theta = theta * (1 - theta) numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta) denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta) outputs = input_cumheights + numerator / denominator derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2) + 2 * input_delta * theta_one_minus_theta + input_derivatives * (1 - theta).pow(2)) logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) return outputs, logabsdet def searchsorted(bin_locations, inputs, eps=1e-6): bin_locations[..., -1] += eps return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 def unconstrained_rational_quadratic_spline(inputs, unnormalized_widths, unnormalized_heights, unnormalized_derivatives, inverse=False, tails='linear', tail_bound=1., min_bin_width=DEFAULT_MIN_BIN_WIDTH, min_bin_height=DEFAULT_MIN_BIN_HEIGHT, min_derivative=DEFAULT_MIN_DERIVATIVE): inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) outside_interval_mask = ~inside_interval_mask outputs = torch.zeros_like(inputs) logabsdet = torch.zeros_like(inputs) if tails == 'linear': unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) constant = np.log(np.exp(1 - min_derivative) - 1) unnormalized_derivatives[..., 0] = constant unnormalized_derivatives[..., -1] = constant outputs[outside_interval_mask] = inputs[outside_interval_mask] logabsdet[outside_interval_mask] = 0 else: raise RuntimeError('{} tails are not implemented.'.format(tails)) outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline( inputs=inputs[inside_interval_mask], unnormalized_widths=unnormalized_widths[inside_interval_mask, :], unnormalized_heights=unnormalized_heights[inside_interval_mask, :], unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], inverse=inverse, left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound, min_bin_width=min_bin_width, min_bin_height=min_bin_height, min_derivative=min_derivative ) return outputs, logabsdet