import os

import spaces

os.system("git clone --branch v3.1 https://github.com/DigitalPhonetics/IMS-Toucan.git toucan_codebase")
os.system("mv toucan_codebase/* .")

from run_model_downloader import download_models

download_models()

import gradio as gr
import torch.cuda
from Preprocessing.multilinguality.SimilaritySolver import load_json_from_path
from Utility.utils import float2pcm

import os

import torch

from Architectures.ControllabilityGAN.GAN import GanWrapper
from InferenceInterfaces.ToucanTTSInterface import ToucanTTSInterface
from Utility.storage_config import MODELS_DIR


class ControllableInterface(torch.nn.Module):

    def __init__(self, available_artificial_voices=1000):
        super().__init__()
        self.model = ToucanTTSInterface(device="cpu", tts_model_path="Meta")
        self.wgan = GanWrapper(os.path.join(MODELS_DIR, "Embedding", "embedding_gan.pt"), device="cpu")
        self.generated_speaker_embeds = list()
        self.available_artificial_voices = available_artificial_voices
        self.current_language = ""
        self.current_accent = ""

    def read(self,
             prompt,
             language,
             accent,
             voice_seed,
             prosody_creativity,
             duration_scaling_factor,
             pause_duration_scaling_factor,
             pitch_variance_scale,
             energy_variance_scale,
             emb_slider_1,
             emb_slider_2,
             emb_slider_3,
             emb_slider_4,
             emb_slider_5,
             emb_slider_6,
             loudness_in_db
             ):
        if self.current_language != language:
            self.model.set_phonemizer_language(language)
            self.current_language = language
        if self.current_accent != accent:
            self.model.set_accent_language(accent)
            self.current_accent = accent

        self.wgan.set_latent(voice_seed)
        controllability_vector = torch.tensor([emb_slider_1,
                                               emb_slider_2,
                                               emb_slider_3,
                                               emb_slider_4,
                                               emb_slider_5,
                                               emb_slider_6], dtype=torch.float32)
        embedding = self.wgan.modify_embed(controllability_vector)
        self.model.set_utterance_embedding(embedding=embedding)

        phones = self.model.text2phone.get_phone_string(prompt)
        if len(phones) > 1800:
            if language == "deu":
                prompt = "Deine Eingabe war zu lang. Bitte versuche es entweder mit einem kürzeren Text oder teile ihn in mehrere Teile auf."
            elif language == "ell":
                prompt = "Η εισήγησή σας ήταν πολύ μεγάλη. Παρακαλώ δοκιμάστε είτε ένα μικρότερο κείμενο είτε χωρίστε το σε διάφορα μέρη."
            elif language == "spa":
                prompt = "Su entrada es demasiado larga. Por favor, intente un texto más corto o divídalo en varias partes."
            elif language == "fin":
                prompt = "Vastauksesi oli liian pitkä. Kokeile joko lyhyempää tekstiä tai jaa se useampaan osaan."
            elif language == "rus":
                prompt = "Ваш текст слишком длинный. Пожалуйста, попробуйте либо сократить текст, либо разделить его на несколько частей."
            elif language == "hun":
                prompt = "Túl hosszú volt a bevitele. Kérjük, próbáljon meg rövidebb szöveget írni, vagy ossza több részre."
            elif language == "nld":
                prompt = "Uw input was te lang. Probeer een kortere tekst of splits het in verschillende delen."
            elif language == "fra":
                prompt = "Votre saisie était trop longue. Veuillez essayer un texte plus court ou le diviser en plusieurs parties."
            elif language == 'pol':
                prompt = "Twój wpis był zbyt długi. Spróbuj skrócić tekst lub podzielić go na kilka części."
            elif language == 'por':
                prompt = "O seu contributo foi demasiado longo. Por favor, tente um texto mais curto ou divida-o em várias partes."
            elif language == 'ita':
                prompt = "Il tuo input era troppo lungo. Per favore, prova un testo più corto o dividilo in più parti."
            elif language == 'cmn':
                prompt = "你的输入太长了。请尝试使用较短的文本或将其拆分为多个部分。"
            elif language == 'vie':
                prompt = "Đầu vào của bạn quá dài. Vui lòng thử một văn bản ngắn hơn hoặc chia nó thành nhiều phần."
            else:
                prompt = "Your input was too long. Please try either a shorter text or split it into several parts."
                if self.current_language != "eng":
                    self.model.set_phonemizer_language("eng")
                    self.current_language = "eng"
                if self.current_accent != "eng":
                    self.model.set_accent_language("eng")
                    self.current_accent = "eng"

        print(prompt)
        wav, sr, fig = self.model(prompt,
                                  input_is_phones=False,
                                  duration_scaling_factor=duration_scaling_factor,
                                  pitch_variance_scale=pitch_variance_scale,
                                  energy_variance_scale=energy_variance_scale,
                                  pause_duration_scaling_factor=pause_duration_scaling_factor,
                                  return_plot_as_filepath=True,
                                  prosody_creativity=prosody_creativity,
                                  loudness_in_db=loudness_in_db)
        return sr, wav, fig


title = "Controllable Text-to-Speech for over 7000 Languages"
article = "Check out the IMS Toucan TTS Toolkit at https://github.com/DigitalPhonetics/IMS-Toucan"
available_artificial_voices = 1000
path_to_iso_list = "Preprocessing/multilinguality/iso_to_fullname.json"
iso_to_name = load_json_from_path(path_to_iso_list)
text_selection = [f"{iso_to_name[iso_code]} Text ({iso_code})" for iso_code in iso_to_name]
controllable_ui = ControllableInterface(available_artificial_voices=available_artificial_voices)


@spaces.GPU
def read(prompt,
         language,
         voice_seed,
         prosody_creativity,
         duration_scaling_factor,
         pitch_variance_scale,
         energy_variance_scale,
         emb1,
         emb2
         ):
    if torch.cuda.is_available():
        controllable_ui.to("cuda")
        controllable_ui.device = "cuda"
    try:
        sr, wav, fig = controllable_ui.read(prompt,
                                            language.split(" ")[-1].split("(")[1].split(")")[0],
                                            language.split(" ")[-1].split("(")[1].split(")")[0],
                                            voice_seed,
                                            prosody_creativity,
                                            duration_scaling_factor,
                                            1.,
                                            pitch_variance_scale,
                                            energy_variance_scale,
                                            emb1,
                                            emb2,
                                            0.,
                                            0.,
                                            0.,
                                            0.,
                                            -24.)
    finally:
        controllable_ui.to("cpu")
        controllable_ui.device = "cpu"
    return (sr, float2pcm(wav)), fig


iface = gr.Interface(fn=read,
                     inputs=[gr.Textbox(lines=2,
                                        placeholder="write what you want the synthesis to read here...",
                                        value="The woods are lovely, dark and deep, but I have promises to keep, and miles to go, before I sleep.",
                                        label="Text input"),
                             gr.Dropdown(text_selection,
                                         type="value",
                                         value='English Text (eng)',
                                         label="Select the Language of the Text (type on your keyboard to find it quickly)"),
                             gr.Slider(minimum=0, maximum=available_artificial_voices, step=1,
                                       value=279,
                                       label="Random Seed for the artificial Voice"),
                             gr.Slider(minimum=0.0, maximum=0.8, step=0.1, value=0.7, label="Prosody Creativity"),
                             gr.Slider(minimum=0.7, maximum=1.3, step=0.1, value=1.0, label="Duration Scale"),
                             gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Pitch Variance Scale"),
                             gr.Slider(minimum=0.5, maximum=1.5, step=0.1, value=1.0, label="Energy Variance Scale"),
                             gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Femininity / Masculinity"),
                             gr.Slider(minimum=-10.0, maximum=10.0, step=0.1, value=0.0, label="Voice Depth")
                             ],
                     outputs=[gr.Audio(type="numpy", label="Speech"),
                              gr.Image(label="Visualization")],
                     title=title,
                     theme="default",
                     allow_flagging="never",
                     article=article)
iface.launch()