import torch.multiprocessing from Architectures.Aligner.CodecAlignerDataset import CodecAlignerDataset from Architectures.Aligner.autoaligner_train_loop import train_loop as train_aligner from Architectures.ToucanTTS.TTSDataset import TTSDataset from Utility.path_to_transcript_dicts import * from Utility.storage_config import MODELS_DIR def prepare_aligner_corpus(transcript_dict, corpus_dir, lang, device, phone_input=False, gpu_count=1, rank=0): return CodecAlignerDataset(transcript_dict, cache_dir=corpus_dir, lang=lang, loading_processes=5, # this can be increased for massive clusters, but the overheads that are introduced are kind of not really worth it device=device, phone_input=phone_input, gpu_count=gpu_count, rank=rank) def prepare_tts_corpus(transcript_dict, corpus_dir, lang, # For small datasets it's best to turn this off and instead inspect the data with the scorer, if there are any issues. fine_tune_aligner=True, use_reconstruction=True, phone_input=False, save_imgs=False, gpu_count=1, rank=0): """ create an aligner dataset, fine-tune an aligner, create a TTS dataset, return it. Automatically skips parts that have been done before. """ if not os.path.exists(os.path.join(corpus_dir, "tts_train_cache.pt")): if fine_tune_aligner: aligner_dir = os.path.join(corpus_dir, "Aligner") aligner_loc = os.path.join(corpus_dir, "Aligner", "aligner.pt") if not os.path.exists(os.path.join(corpus_dir, "aligner_train_cache.pt")): prepare_aligner_corpus(transcript_dict, corpus_dir=corpus_dir, lang=lang, phone_input=phone_input, device=torch.device("cuda")) if not os.path.exists(os.path.join(aligner_dir, "aligner.pt")): aligner_datapoints = prepare_aligner_corpus(transcript_dict, corpus_dir=corpus_dir, lang=lang, phone_input=phone_input, device=torch.device("cuda")) if os.path.exists(os.path.join(MODELS_DIR, "Aligner", "aligner.pt")): train_aligner(train_dataset=aligner_datapoints, device=torch.device("cuda"), save_directory=aligner_dir, steps=min(len(aligner_datapoints) // 2, 10000), # relatively good finetuning heuristic batch_size=32 if len(aligner_datapoints) > 32 else len(aligner_datapoints) // 2, path_to_checkpoint=os.path.join(MODELS_DIR, "Aligner", "aligner.pt"), fine_tune=True, debug_img_path=aligner_dir, resume=False, use_reconstruction=use_reconstruction) else: train_aligner(train_dataset=aligner_datapoints, device=torch.device("cuda"), save_directory=aligner_dir, steps=len(aligner_datapoints) // 2, # relatively good heuristic batch_size=32 if len(aligner_datapoints) > 32 else len(aligner_datapoints) // 2, path_to_checkpoint=None, fine_tune=False, debug_img_path=aligner_dir, resume=False, use_reconstruction=use_reconstruction) else: aligner_loc = os.path.join(MODELS_DIR, "Aligner", "aligner.pt") else: aligner_loc = None return TTSDataset(transcript_dict, acoustic_checkpoint_path=aligner_loc, cache_dir=corpus_dir, device=torch.device("cuda"), lang=lang, save_imgs=save_imgs, gpu_count=gpu_count, rank=rank)