# Copyright 2019 Tomoki Hayashi # MIT License (https://opensource.org/licenses/MIT) # Adapted by Florian Lux 2021 import torch from Architectures.GeneralLayers.ConditionalLayerNorm import AdaIN1d from Architectures.GeneralLayers.ConditionalLayerNorm import ConditionalLayerNorm from Architectures.GeneralLayers.LayerNorm import LayerNorm from Utility.utils import integrate_with_utt_embed class DurationPredictor(torch.nn.Module): """ Duration predictor module. This is a module of duration predictor described in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. The duration predictor predicts a duration of each frame in log domain from the hidden embeddings of encoder. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf Note: The calculation domain of outputs is different between in `forward` and in `inference`. In `forward`, the outputs are calculated in log domain but in `inference`, those are calculated in linear domain. """ def __init__(self, idim, n_layers=2, n_chans=384, kernel_size=3, dropout_rate=0.1, offset=1.0, utt_embed_dim=None, embedding_integration="AdaIN"): """ Initialize duration predictor module. Args: idim (int): Input dimension. n_layers (int, optional): Number of convolutional layers. n_chans (int, optional): Number of channels of convolutional layers. kernel_size (int, optional): Kernel size of convolutional layers. dropout_rate (float, optional): Dropout rate. offset (float, optional): Offset value to avoid nan in log domain. """ super(DurationPredictor, self).__init__() self.offset = offset self.conv = torch.nn.ModuleList() self.dropouts = torch.nn.ModuleList() self.norms = torch.nn.ModuleList() self.embedding_projections = torch.nn.ModuleList() self.utt_embed_dim = utt_embed_dim self.use_conditional_layernorm_embedding_integration = embedding_integration in ["AdaIN", "ConditionalLayerNorm"] for idx in range(n_layers): if utt_embed_dim is not None: if embedding_integration == "AdaIN": self.embedding_projections += [AdaIN1d(style_dim=utt_embed_dim, num_features=idim)] elif embedding_integration == "ConditionalLayerNorm": self.embedding_projections += [ConditionalLayerNorm(speaker_embedding_dim=utt_embed_dim, hidden_dim=idim)] else: self.embedding_projections += [torch.nn.Linear(utt_embed_dim + idim, idim)] else: self.embedding_projections += [lambda x: x] in_chans = idim if idx == 0 else n_chans self.conv += [torch.nn.Sequential(torch.nn.Conv1d(in_chans, n_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2, ), torch.nn.ReLU())] self.norms += [LayerNorm(n_chans, dim=1)] self.dropouts += [torch.nn.Dropout(dropout_rate)] self.linear = torch.nn.Linear(n_chans, 1) def _forward(self, xs, x_masks=None, is_inference=False, utt_embed=None): xs = xs.transpose(1, -1) # (B, idim, Tmax) for f, c, d, p in zip(self.conv, self.norms, self.dropouts, self.embedding_projections): xs = f(xs) # (B, C, Tmax) if self.utt_embed_dim is not None: xs = integrate_with_utt_embed(hs=xs.transpose(1, 2), utt_embeddings=utt_embed, projection=p, embedding_training=self.use_conditional_layernorm_embedding_integration).transpose(1, 2) xs = c(xs) xs = d(xs) # NOTE: targets are transformed to log domain in the loss calculation, so this will learn to predict in the log space, which makes the value range easier to handle. xs = self.linear(xs.transpose(1, -1)).squeeze(-1) # (B, Tmax) if is_inference: # NOTE: since we learned to predict in the log domain, we have to invert the log during inference. xs = torch.clamp(torch.round(xs.exp() - self.offset), min=0).long() # avoid negative value else: xs = xs.masked_fill(x_masks, 0.0) return xs def forward(self, xs, padding_mask=None, utt_embed=None): """ Calculate forward propagation. Args: xs (Tensor): Batch of input sequences (B, Tmax, idim). padding_mask (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). Returns: Tensor: Batch of predicted durations in log domain (B, Tmax). """ return self._forward(xs, padding_mask, False, utt_embed=utt_embed) def inference(self, xs, padding_mask=None, utt_embed=None): """ Inference duration. Args: xs (Tensor): Batch of input sequences (B, Tmax, idim). padding_mask (ByteTensor, optional): Batch of masks indicating padded part (B, Tmax). Returns: LongTensor: Batch of predicted durations in linear domain (B, Tmax). """ return self._forward(xs, padding_mask, True, utt_embed=utt_embed) class DurationPredictorLoss(torch.nn.Module): """ Loss function module for duration predictor. The loss value is Calculated in log domain to make it Gaussian. """ def __init__(self, offset=1.0, reduction="mean"): """ Args: offset (float, optional): Offset value to avoid nan in log domain. reduction (str): Reduction type in loss calculation. """ super(DurationPredictorLoss, self).__init__() self.criterion = torch.nn.MSELoss(reduction=reduction) self.offset = offset def forward(self, outputs, targets): """ Calculate forward propagation. Args: outputs (Tensor): Batch of prediction durations in log domain (B, T) targets (LongTensor): Batch of groundtruth durations in linear domain (B, T) Returns: Tensor: Mean squared error loss value. Note: `outputs` is in log domain but `targets` is in linear domain. """ # NOTE: outputs is in log domain while targets in linear targets = torch.log(targets.float() + self.offset) loss = self.criterion(outputs, targets) return loss