import numpy as np import torch import torch.utils.data import torch.utils.data.distributed from torch import nn class ResNet_G(nn.Module): def __init__(self, data_dim, z_dim, size, nfilter=64, nfilter_max=512, bn=True, res_ratio=0.1, **kwargs): super().__init__() self.input_dim = z_dim self.output_dim = z_dim self.dropout_rate = 0 s0 = self.s0 = 4 nf = self.nf = nfilter nf_max = self.nf_max = nfilter_max self.bn = bn self.z_dim = z_dim # Submodules nlayers = int(np.log2(size / s0)) self.nf0 = min(nf_max, nf * 2 ** (nlayers + 1)) self.fc = nn.Linear(z_dim, self.nf0 * s0 * s0) if self.bn: self.bn1d = nn.BatchNorm1d(self.nf0 * s0 * s0) self.relu = nn.LeakyReLU(0.2, inplace=True) blocks = [] for i in range(nlayers, 0, -1): nf0 = min(nf * 2 ** (i + 1), nf_max) nf1 = min(nf * 2 ** i, nf_max) blocks += [ ResNetBlock(nf0, nf1, bn=self.bn, res_ratio=res_ratio), nn.Upsample(scale_factor=2) ] nf0 = min(nf * 2, nf_max) nf1 = min(nf, nf_max) blocks += [ ResNetBlock(nf0, nf1, bn=self.bn, res_ratio=res_ratio), ResNetBlock(nf1, nf1, bn=self.bn, res_ratio=res_ratio) ] self.resnet = nn.Sequential(*blocks) self.conv_img = nn.Conv2d(nf, 3, 3, padding=1) self.fc_out = nn.Linear(3 * size * size, data_dim) def forward(self, z, return_intermediate=False): # print(z.shape) batch_size = z.size(0) # z = z.view(batch_size, -1) out = self.fc(z) if self.bn: out = self.bn1d(out) out = self.relu(out) if return_intermediate: l_1 = out.detach().clone() out = out.view(batch_size, self.nf0, self.s0, self.s0) # print(out.shape) out = self.resnet(out) # print(out.shape) # out = out.view(batch_size, self.nf0*self.s0*self.s0*2) out = self.conv_img(out) out = self.relu(out) out.flatten(1) out = self.fc_out(out.flatten(1)) if return_intermediate: return out, l_1 return out def sample_latent(self, n_samples, z_size, temperature=0.7): return torch.randn((n_samples, z_size)) * temperature class ResNet_D(nn.Module): def __init__(self, data_dim, size, nfilter=64, nfilter_max=512, res_ratio=0.1): super().__init__() s0 = self.s0 = 4 nf = self.nf = nfilter nf_max = self.nf_max = nfilter_max self.size = size # Submodules nlayers = int(np.log2(size / s0)) self.nf0 = min(nf_max, nf * 2 ** nlayers) nf0 = min(nf, nf_max) nf1 = min(nf * 2, nf_max) blocks = [ ResNetBlock(nf0, nf0, bn=False, res_ratio=res_ratio), ResNetBlock(nf0, nf1, bn=False, res_ratio=res_ratio) ] self.fc_input = nn.Linear(data_dim, 3 * size * size) for i in range(1, nlayers + 1): nf0 = min(nf * 2 ** i, nf_max) nf1 = min(nf * 2 ** (i + 1), nf_max) blocks += [ nn.AvgPool2d(3, stride=2, padding=1), ResNetBlock(nf0, nf1, bn=False, res_ratio=res_ratio), ] self.conv_img = nn.Conv2d(3, 1 * nf, 3, padding=1) self.relu = nn.LeakyReLU(0.2, inplace=True) self.resnet = nn.Sequential(*blocks) self.fc = nn.Linear(self.nf0 * s0 * s0, 1) def forward(self, x): batch_size = x.size(0) out = self.fc_input(x) out = self.relu(out).view(batch_size, 3, self.size, self.size) out = self.relu((self.conv_img(out))) out = self.resnet(out) out = out.view(batch_size, self.nf0 * self.s0 * self.s0) out = self.fc(out) return out class ResNetBlock(nn.Module): def __init__(self, fin, fout, fhidden=None, bn=True, res_ratio=0.1): super().__init__() # Attributes self.bn = bn self.is_bias = not bn self.learned_shortcut = (fin != fout) self.fin = fin self.fout = fout if fhidden is None: self.fhidden = min(fin, fout) else: self.fhidden = fhidden self.res_ratio = res_ratio # Submodules self.conv_0 = nn.Conv2d(self.fin, self.fhidden, 3, stride=1, padding=1, bias=self.is_bias) if self.bn: self.bn2d_0 = nn.BatchNorm2d(self.fhidden) self.conv_1 = nn.Conv2d(self.fhidden, self.fout, 3, stride=1, padding=1, bias=self.is_bias) if self.bn: self.bn2d_1 = nn.BatchNorm2d(self.fout) if self.learned_shortcut: self.conv_s = nn.Conv2d(self.fin, self.fout, 1, stride=1, padding=0, bias=False) if self.bn: self.bn2d_s = nn.BatchNorm2d(self.fout) self.relu = nn.LeakyReLU(0.2, inplace=True) def forward(self, x): x_s = self._shortcut(x) dx = self.conv_0(x) if self.bn: dx = self.bn2d_0(dx) dx = self.relu(dx) dx = self.conv_1(dx) if self.bn: dx = self.bn2d_1(dx) out = self.relu(x_s + self.res_ratio * dx) return out def _shortcut(self, x): if self.learned_shortcut: x_s = self.conv_s(x) if self.bn: x_s = self.bn2d_s(x_s) else: x_s = x return x_s