""" MIT licensed code taken and adapted from https://github.com/rishikksh20/Avocodo-pytorch Copyright (c) 2022 Rishikesh (ऋषिकेश) adapted 2022, Florian Lux """ import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from scipy import signal as sig from torch.nn import Conv1d from torch.nn.utils import spectral_norm from torch.nn.utils import weight_norm from Architectures.Vocoder.SAN_modules import SANConv1d def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) class MultiCoMBDiscriminator(torch.nn.Module): def __init__(self, kernels, channels, groups, strides): super(MultiCoMBDiscriminator, self).__init__() self.combd_1 = CoMBD(filters=channels, kernels=kernels[0], groups=groups, strides=strides) self.combd_2 = CoMBD(filters=channels, kernels=kernels[1], groups=groups, strides=strides) self.combd_3 = CoMBD(filters=channels, kernels=kernels[2], groups=groups, strides=strides) self.pqmf_2 = PQMF(N=2, taps=256, cutoff=0.25, beta=10.0) self.pqmf_4 = PQMF(N=8, taps=192, cutoff=0.13, beta=10.0) def forward(self, wave_final, intermediate_wave_upsampled_twice=None, intermediate_wave_upsampled_once=None, discriminator_train_flag=False): if intermediate_wave_upsampled_twice is not None and intermediate_wave_upsampled_once is not None: # get features of generated wave features_of_predicted = [] out3, p3_fmap_hat = self.combd_3(wave_final, discriminator_train_flag) features_of_predicted = features_of_predicted + p3_fmap_hat x2_hat_ = self.pqmf_2(wave_final)[:, :1, :] x1_hat_ = self.pqmf_4(wave_final)[:, :1, :] out2, p2_fmap_hat_ = self.combd_2(intermediate_wave_upsampled_twice, discriminator_train_flag) features_of_predicted = features_of_predicted + p2_fmap_hat_ out1, p1_fmap_hat_ = self.combd_1(intermediate_wave_upsampled_once, discriminator_train_flag) features_of_predicted = features_of_predicted + p1_fmap_hat_ out22, p2_fmap_hat = self.combd_2(x2_hat_, discriminator_train_flag) features_of_predicted = features_of_predicted + p2_fmap_hat out12, p1_fmap_hat = self.combd_1(x1_hat_, discriminator_train_flag) features_of_predicted = features_of_predicted + p1_fmap_hat return [out1, out12, out2, out22, out3], features_of_predicted else: # get features of gold wave features_of_gold = [] out3, p3_fmap = self.combd_3(wave_final, discriminator_train_flag) features_of_gold = features_of_gold + p3_fmap x2_ = self.pqmf_2(wave_final)[:, :1, :] # Select first band x1_ = self.pqmf_4(wave_final)[:, :1, :] # Select first band out2, p2_fmap_ = self.combd_2(x2_, discriminator_train_flag) features_of_gold = features_of_gold + p2_fmap_ out1, p1_fmap_ = self.combd_1(x1_, discriminator_train_flag) features_of_gold = features_of_gold + p1_fmap_ out22, p2_fmap = self.combd_2(x2_, discriminator_train_flag) features_of_gold = features_of_gold + p2_fmap out12, p1_fmap = self.combd_1(x1_, discriminator_train_flag) features_of_gold = features_of_gold + p1_fmap return [out1, out12, out2, out22, out3], features_of_gold class MultiSubBandDiscriminator(torch.nn.Module): def __init__(self, tkernels, fkernel, tchannels, fchannels, tstrides, fstride, tdilations, fdilations, tsubband, n, m, freq_init_ch): super(MultiSubBandDiscriminator, self).__init__() self.fsbd = SubBandDiscriminator(init_channel=freq_init_ch, channels=fchannels, kernel=fkernel, strides=fstride, dilations=fdilations) self.tsubband1 = tsubband[0] self.tsbd1 = SubBandDiscriminator(init_channel=self.tsubband1, channels=tchannels, kernel=tkernels[0], strides=tstrides[0], dilations=tdilations[0]) self.tsubband2 = tsubband[1] self.tsbd2 = SubBandDiscriminator(init_channel=self.tsubband2, channels=tchannels, kernel=tkernels[1], strides=tstrides[1], dilations=tdilations[1]) self.tsubband3 = tsubband[2] self.tsbd3 = SubBandDiscriminator(init_channel=self.tsubband3, channels=tchannels, kernel=tkernels[2], strides=tstrides[2], dilations=tdilations[2]) self.pqmf_n = PQMF(N=n, taps=256, cutoff=0.03, beta=10.0) self.pqmf_m = PQMF(N=m, taps=256, cutoff=0.1, beta=9.0) def forward(self, wave, discriminator_train_flag): fmap_hat = [] # Time analysis xn_hat = self.pqmf_n(wave) q3_hat, feat_q3_hat = self.tsbd3(xn_hat[:, :self.tsubband3, :], discriminator_train_flag) fmap_hat = fmap_hat + feat_q3_hat q2_hat, feat_q2_hat = self.tsbd2(xn_hat[:, :self.tsubband2, :], discriminator_train_flag) fmap_hat = fmap_hat + feat_q2_hat q1_hat, feat_q1_hat = self.tsbd1(xn_hat[:, :self.tsubband1, :], discriminator_train_flag) fmap_hat = fmap_hat + feat_q1_hat # Frequency analysis xm_hat = self.pqmf_m(wave) xm_hat = xm_hat.transpose(-2, -1) q4_hat, feat_q4_hat = self.fsbd(xm_hat, discriminator_train_flag) fmap_hat = fmap_hat + feat_q4_hat return [q1_hat, q2_hat, q3_hat, q4_hat], fmap_hat class CoMBD(torch.nn.Module): def __init__(self, filters, kernels, groups, strides, use_spectral_norm=False): super(CoMBD, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = nn.ModuleList() init_channel = 1 for i, (f, k, g, s) in enumerate(zip(filters, kernels, groups, strides)): self.convs.append(norm_f(Conv1d(init_channel, f, k, s, padding=get_padding(k, 1), groups=g))) init_channel = f self.conv_post = norm_f(SANConv1d(filters[-1], 1, 3, 1, padding=get_padding(3, 1))) def forward(self, x, discriminator_train_flag): fmap = [] for l in self.convs: x = l(x) x = F.leaky_relu(x, 0.1) fmap.append(x) x = self.conv_post(x, discriminator_train_flag) # fmap.append(x) return x, fmap class MDC(torch.nn.Module): def __init__(self, in_channel, channel, kernel, stride, dilations, use_spectral_norm=False): super(MDC, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.convs = torch.nn.ModuleList() self.num_dilations = len(dilations) for d in dilations: self.convs.append(norm_f(Conv1d(in_channel, channel, kernel, stride=1, padding=get_padding(kernel, d), dilation=d))) self.conv_out = norm_f(SANConv1d(channel, channel, 3, stride=stride, padding=get_padding(3, 1))) def forward(self, x): xs = None for l in self.convs: if xs is None: xs = l(x) else: xs += l(x) x = xs / self.num_dilations x = self.conv_out(x) x = F.leaky_relu(x, 0.1) return x class SubBandDiscriminator(torch.nn.Module): def __init__(self, init_channel, channels, kernel, strides, dilations, use_spectral_norm=False): super(SubBandDiscriminator, self).__init__() norm_f = weight_norm if use_spectral_norm == False else spectral_norm self.mdcs = torch.nn.ModuleList() for channel, stride, dilation in zip(channels, strides, dilations): self.mdcs.append(MDC(init_channel, channel, kernel, stride, dilation)) init_channel = channel # output channel of this layer becomes input channel of next layer self.conv_post = norm_f(SANConv1d(init_channel, 1, 3, padding=get_padding(3, 1))) def forward(self, x, discriminator_train_flag): fmap = [] for l in self.mdcs: x = l(x) fmap.append(x) x = self.conv_post(x, discriminator_train_flag) # fmap.append(x) return x, fmap # adapted from # https://github.com/kan-bayashi/ParallelWaveGAN/tree/master/parallel_wavegan class PQMF(torch.nn.Module): def __init__(self, N=4, taps=62, cutoff=0.15, beta=9.0): super(PQMF, self).__init__() self.N = N self.taps = taps self.cutoff = cutoff self.beta = beta QMF = sig.firwin(taps + 1, cutoff, window=('kaiser', beta)) H = np.zeros((N, len(QMF))) G = np.zeros((N, len(QMF))) for k in range(N): constant_factor = (2 * k + 1) * (np.pi / (2 * N)) * (np.arange(taps + 1) - ((taps - 1) / 2)) phase = (-1) ** k * np.pi / 4 H[k] = 2 * QMF * np.cos(constant_factor + phase) G[k] = 2 * QMF * np.cos(constant_factor - phase) H = torch.from_numpy(H[:, None, :]).float() G = torch.from_numpy(G[None, :, :]).float() self.register_buffer("H", H) self.register_buffer("G", G) updown_filter = torch.zeros((N, N, N)).float() for k in range(N): updown_filter[k, k, 0] = 1.0 self.register_buffer("updown_filter", updown_filter) self.N = N self.pad_fn = torch.nn.ConstantPad1d(taps // 2, 0.0) def forward(self, x): return self.analysis(x) def analysis(self, x): return F.conv1d(x, self.H, padding=self.taps // 2, stride=self.N) def synthesis(self, x): x = F.conv_transpose1d(x, self.updown_filter * self.N, stride=self.N) x = F.conv1d(x, self.G, padding=self.taps // 2) return x