Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,139 Bytes
6faeba1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
"""
Code is from https://github.com/sony/bigvsan/blob/main/san_modules.py
Paper: Shibuya, T., Takida, Y., Mitsufuji, Y., "BigVSAN: Enhancing GAN-based Neural Vocoders with Slicing Adversarial Network," Preprint.
https://arxiv.org/pdf/2309.02836.pdf
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
def _normalize(tensor, dim):
denom = tensor.norm(p=2.0, dim=dim, keepdim=True).clamp_min(1e-12)
return tensor / denom
class SANConv1d(nn.Conv1d):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=True,
padding_mode='zeros',
device=None,
dtype=None
):
super(SANConv1d, self).__init__(
in_channels, out_channels, kernel_size, stride, padding=padding, dilation=dilation,
groups=1, bias=bias, padding_mode=padding_mode, device=device, dtype=dtype)
scale = self.weight.norm(p=2.0, dim=[1, 2], keepdim=True).clamp_min(1e-12)
self.weight = nn.parameter.Parameter(self.weight / scale.expand_as(self.weight))
self.scale = nn.parameter.Parameter(scale.view(out_channels))
if bias:
self.bias = nn.parameter.Parameter(torch.zeros(in_channels, device=device, dtype=dtype))
else:
self.register_parameter('bias', None)
self.normalize_weight()
def forward(self, input, flg_train=False):
if self.bias is not None:
input = input + self.bias.view(self.in_channels, 1)
normalized_weight = self._get_normalized_weight()
scale = self.scale.view(self.out_channels, 1)
if flg_train:
out_fun = F.conv1d(input, normalized_weight.detach(), None, self.stride,
self.padding, self.dilation, self.groups)
out_dir = F.conv1d(input.detach(), normalized_weight, None, self.stride,
self.padding, self.dilation, self.groups)
out = [out_fun * scale, out_dir * scale.detach()]
else:
out = F.conv1d(input, normalized_weight, None, self.stride,
self.padding, self.dilation, self.groups)
out = out * scale
return out
@torch.no_grad()
def normalize_weight(self):
self.weight.data = self._get_normalized_weight()
def _get_normalized_weight(self):
return _normalize(self.weight, dim=[1, 2])
class SANConv2d(nn.Conv2d):
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
bias=True,
padding_mode='zeros',
device=None,
dtype=None
):
super(SANConv2d, self).__init__(
in_channels, out_channels, kernel_size, stride, padding=padding, dilation=dilation,
groups=1, bias=bias, padding_mode=padding_mode, device=device, dtype=dtype)
scale = self.weight.norm(p=2.0, dim=[1, 2, 3], keepdim=True).clamp_min(1e-12)
self.weight = nn.parameter.Parameter(self.weight / scale.expand_as(self.weight))
self.scale = nn.parameter.Parameter(scale.view(out_channels))
if bias:
self.bias = nn.parameter.Parameter(torch.zeros(in_channels, device=device, dtype=dtype))
else:
self.register_parameter('bias', None)
self.normalize_weight()
def forward(self, input, flg_train=False):
if self.bias is not None:
input = input + self.bias.view(self.in_channels, 1, 1)
normalized_weight = self._get_normalized_weight()
scale = self.scale.view(self.out_channels, 1, 1)
if flg_train:
out_fun = F.conv2d(input, normalized_weight.detach(), None, self.stride,
self.padding, self.dilation, self.groups)
out_dir = F.conv2d(input.detach(), normalized_weight, None, self.stride,
self.padding, self.dilation, self.groups)
out = [out_fun * scale, out_dir * scale.detach()]
else:
out = F.conv2d(input, normalized_weight, None, self.stride,
self.padding, self.dilation, self.groups)
out = out * scale
return out
@torch.no_grad()
def normalize_weight(self):
self.weight.data = self._get_normalized_weight()
def _get_normalized_weight(self):
return _normalize(self.weight, dim=[1, 2, 3])
class SANEmbedding(nn.Embedding):
def __init__(self, num_embeddings, embedding_dim,
scale_grad_by_freq=False,
sparse=False, _weight=None,
device=None, dtype=None):
super(SANEmbedding, self).__init__(
num_embeddings, embedding_dim, padding_idx=None,
max_norm=None, norm_type=2., scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse, _weight=_weight,
device=device, dtype=dtype)
scale = self.weight.norm(p=2.0, dim=1, keepdim=True).clamp_min(1e-12)
self.weight = nn.parameter.Parameter(self.weight / scale.expand_as(self.weight))
self.scale = nn.parameter.Parameter(scale)
def forward(self, input, flg_train=False):
out = F.embedding(
input, self.weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
out = _normalize(out, dim=-1)
scale = F.embedding(
input, self.scale, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
if flg_train:
out_fun = out.detach()
out_dir = out
out = [out_fun * scale, out_dir * scale.detach()]
else:
out = out * scale
return out
@torch.no_grad()
def normalize_weight(self):
self.weight.data = _normalize(self.weight, dim=1)
|