Spaces:
Running
Running
Add gradio app with requirements
Browse files- app.py +36 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import gradio as gr
|
3 |
+
from ultralytics import YOLO
|
4 |
+
|
5 |
+
model_path = "best.pt"
|
6 |
+
model = YOLO(model_path)
|
7 |
+
|
8 |
+
|
9 |
+
PREDICT_KWARGS = {
|
10 |
+
"classes": 0,
|
11 |
+
"conf": 0.25,
|
12 |
+
}
|
13 |
+
|
14 |
+
|
15 |
+
def run(image_path):
|
16 |
+
results = model.predict(image_path, **PREDICT_KWARGS)
|
17 |
+
return results[0].plot()[:, :, ::-1] # reverse channels for gradio
|
18 |
+
|
19 |
+
|
20 |
+
title = "Megalodon Detector"
|
21 |
+
description = (
|
22 |
+
""
|
23 |
+
)
|
24 |
+
|
25 |
+
examples = glob.glob("images/*.png")
|
26 |
+
|
27 |
+
interface = gr.Interface(
|
28 |
+
run,
|
29 |
+
inputs=[gr.components.Image(type="filepath")],
|
30 |
+
outputs=gr.components.Image(type="numpy"),
|
31 |
+
title=title,
|
32 |
+
description=description,
|
33 |
+
examples=examples,
|
34 |
+
)
|
35 |
+
|
36 |
+
interface.queue().launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ultralytics==8.0.158
|