Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
from diffusers import StableDiffusionPipeline, AutoencoderKL
|
| 4 |
+
from torchvision import models
|
| 5 |
+
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-350M-multi")
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-350M-multi")
|
| 8 |
+
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
| 9 |
+
video_model = models.resnet50(pretrained=True)
|
| 10 |
+
st.title("FallnAI Inference App")
|
| 11 |
+
st.subheader("Coding Model")
|
| 12 |
+
user_input = st.text_input("Enter your code:")
|
| 13 |
+
if st.button("Generate"):
|
| 14 |
+
result = pipeline("text-generation", model=model, tokenizer=tokenizer)(user_input)
|
| 15 |
+
st.write(result[0]['generated_text'])
|
| 16 |
+
st.subheader("Stable Diffusion Model")
|
| 17 |
+
prompt = st.text_input("Enter your prompt:")
|
| 18 |
+
if st.button("Generate"):
|
| 19 |
+
image = pipe(prompt).images[0]
|
| 20 |
+
st.image(image)
|
| 21 |
+
st.subheader("Video Model")
|
| 22 |
+
video_file = st.file_uploader("Upload a video file:", type=["mp4", "avi"])
|
| 23 |
+
if video_file is not None:
|
| 24 |
+
video_bytes = video_file.getvalue()
|
| 25 |
+
st.video(video_bytes)
|
| 26 |
+
video_transformed = video_model(video_bytes)
|
| 27 |
+
|
| 28 |
+
|