from flask import Flask, render_template, request, send_file, redirect
import json
import requests
from urllib.request import urlopen
from bs4 import BeautifulSoup
import re
import joblib
from nltk.sentiment import SentimentIntensityAnalyzer
import matplotlib.pyplot as plt
from matplotlib import font_manager
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
plt.switch_backend('Agg')
import numpy as np
from io import BytesIO
import base64
from dotenv import load_dotenv
import os
import threading
import nltk
nltk.download('vader_lexicon')
def load_classifier_and_vectorizer():
global classifier, vectorizer
classifier = joblib.load('./data/sentiment_classifier.pkl')
vectorizer = joblib.load('./data/sentiment_vectorizer.pkl')
# Start loading in a separate thread
loading_thread = threading.Thread(target=load_classifier_and_vectorizer)
loading_thread.start()
app = Flask(__name__)
load_dotenv()
# Function to get Google search links
def search_links(query):
base_url = "https://www.googleapis.com/customsearch/v1"
api_key = os.environ['api_key']
cx = os.environ['cx']
params = {
'q': query,
'key': api_key,
'cx': cx
}
Err = ""
response = requests.get(base_url, params=params)
if response.status_code == 429 or response.status_code == 403:
Err = "Daily API limit reached"
print("API limit reached.")
return []
results = response.json().get('items', [])
# Extract title and link from the results and create a list of dictionaries
links_with_titles = [[{item.get('title', ''): item.get('link', '')} for item in results], Err]
return links_with_titles
# Function to fetch reviews
def get_reviews(movie_url, review_type):
page = urlopen(movie_url)
html_bytes = page.read()
html = html_bytes.decode("utf-8")
emsId = re.search(r'"emsId":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
title = re.search(r'"titleName":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
title_type = re.search(r'"titleType":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
vanity = re.search(r'"vanity":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
s_no = ""
if title_type == "Tv":
s_no = re.search(r'"tvSeason":\s*"([^"]+)"', html, re.IGNORECASE).group(1)
poster_page_url = f'https://www.rottentomatoes.com/{"tv" if title_type == "Tv" else "m"}/{vanity}/{f"{s_no}/" if s_no else ""}reviews'
poster_page = urlopen(poster_page_url)
soup = BeautifulSoup(poster_page, 'html.parser')
poster_link = soup.find('img', {'data-qa': 'sidebar-poster-img'})
if poster_link:
poster_link = poster_link.get('src')
else:
poster_link = '/data/favicon.ico'
hasNextPage = True
reviews = []
after = ""
while hasNextPage and len(reviews) < 100:
url = f'https://www.rottentomatoes.com/napi/{"season" if title_type == "Tv" else "movie"}/{emsId}/reviews/{review_type}?after={after}'
response = urlopen(url).read().decode('utf-8')
response_object = json.loads(response)
responseArray = response_object['reviews']
for review in responseArray:
reviews.append(review['quote'])
hasNextPage = response_object['pageInfo']['hasNextPage']
if hasNextPage:
after = response_object['pageInfo']['endCursor']
global show_info
show_info = [title, poster_link]
return reviews
# Function to clean text
def clean(input_string):
cleaned_string = re.sub(r'\s+', ' ', input_string)
return cleaned_string.strip()
def analyze_sentiment(reviews):
loading_thread.join()
# Clean and analyze reviews
cleaned_reviews = [clean(phrase) for phrase in reviews]
new_vector = vectorizer.transform(cleaned_reviews)
predictions = classifier.predict(new_vector)
# Return predictions
return predictions
# Function to get polarity scores using NLTK
def get_polarity_scores(reviews):
cleaned_reviews = [clean(phrase) for phrase in reviews]
sia = SentimentIntensityAnalyzer()
scores_list = []
for entry in reviews:
scores = sia.polarity_scores(entry)
scores_list.append(scores)
return scores_list
#Load Font
custom_font_path = 'data/HPSimplified.ttf'
font_manager.fontManager.addfont(custom_font_path)
# Function to plot a bar chart
def plot_bar(data, title):
# Extracting values for each sentiment
neg_values = [entry['neg'] for entry in data]
neu_values = [entry['neu'] for entry in data]
pos_values = [entry['pos'] for entry in data]
compound_values = [entry['compound'] for entry in data]
# Creating positions for bars
positions = range(len(data))
# Plotting the stacked bars
fig, ax = plt.subplots(figsize=(20,10))
width = 0.7
# Bottom bar (red)
ax.bar(positions, neg_values, width=width, color='#961e1e', label='Negative')
# Middle bar (gray)
ax.bar(positions, neu_values, width=width, bottom=neg_values, color='#999', label='Neutral')
# Top bar (green)
ax.bar(positions, pos_values, width=width, bottom=np.array(neg_values) + np.array(neu_values), color='#015501', label='Positive')
# Adding labels and title
plt.xlabel('Reviews', fontdict={'fontname': 'HP Simplified', 'fontsize': 30, 'weight':'bold', 'color':'#fff'}, labelpad=20)
plt.ylabel('Polarity Scores', fontdict={'fontname': 'HP Simplified', 'fontsize': 30, 'weight':'bold', 'color':'#fff'}, labelpad=20)
plt.title(title, fontdict={'fontname': 'HP Simplified', 'fontsize': 40, 'weight':'bold', 'color':'#fff'}, pad=20)
plt.yticks(fontname='HP Simplified', fontsize=24, color="#fff")
# Remove X-axis labels
ax.set_xticks([])
ax.set_facecolor('#000')
# Adding legend
legend = plt.legend(loc='upper right', bbox_to_anchor=(1.25, 1), prop={'family': 'HP Simplified', 'size': 32})
average = np.mean(compound_values)
text = f'Average Compound Score'
avg_text = f'\n{average:.2f}'
plt.text(0.91, 0.66, text, fontsize=20, fontname='HP Simplified', weight="bold", color="white", ha='center', va='center', transform=fig.transFigure)
plt.text(0.91, 0.64, avg_text, fontsize=36, fontname='HP Simplified', weight="bold", color="white", ha='center', va='center', transform=fig.transFigure)
# Set the background color
fig.set_facecolor('#1e1e1e')
plt.tight_layout()
# Convert the Matplotlib figure to a Flask response
output = BytesIO()
FigureCanvas(fig).print_png(output)
plt.close()
return base64.b64encode(output.getvalue()).decode('utf-8')
def plot_pie(data, title):
unique, counts = np.unique(data, return_counts=True)
explode = ()
if len(unique) > 1:
explode = (0, 0.1)
else:
explode = (0,)
#add colors
colors = []
if unique[0] == "Negative":
colors = ['#961e1e','#024d0f']
elif unique[0] == "Positive":
colors = ['#024d0f','#961e1e']
fig, ax = plt.subplots()
fig.patch.set_facecolor('#1e1e1e')
ax.pie(counts, explode=explode, labels=unique, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90)
# Set custom fonts for title, labels, and autopct
ax.set_title(title, fontdict={'family': 'HP Simplified', 'color': 'White', 'weight': 'bold', 'size': 28})
for text in ax.texts:
text.set_fontfamily('HP Simplified')
text.set_fontsize('20')
text.set_fontweight('bold')
text.set_color('White')
# Equal aspect ratio ensures that pie is drawn as a circle
ax.axis('equal')
plt.tight_layout()
output = BytesIO()
FigureCanvas(fig).print_png(output)
plt.close()
return base64.b64encode(output.getvalue()).decode('utf-8')
@app.route('/data/bg.png')
def bg():
return send_file('data/bg.png')
@app.route('/data/search-icon.svg')
def search_icon():
return send_file('data/search-icon.svg')
@app.route('/data/favicon.ico')
def favicon():
return send_file('data/favicon.ico')
@app.route('/data/HPSimplified.ttf')
def font():
return send_file('data/HPSimplified.ttf')
@app.route('/data/search.gif')
def searchload():
return send_file('./data/search.gif')
@app.route('/')
def home():
return render_template('index.html')
@app.route('/search')
def search():
query = request.args.get('query')
if query:
search_data = search_links(query)
if len(search_data[0]) == 0:
search_data[1] = "No links found for your query"
return render_template('search.html', links=search_data[0], Err=search_data[1])
else:
return redirect('/')
@app.route('/review')
def review():
url = request.args.get('url')
if url:
url = url
user = get_reviews(url, 'user')
critic = get_reviews(url, 'all')
user_pie_img, user_bar_img, critic_pie_img, critic_bar_img = '', '', '', ''
if len(user) > 0:
user_polarity = get_polarity_scores(user)
user_reviews = analyze_sentiment(user)
user_bar = plot_bar(user_polarity, "User Sentiments")
user_pie = plot_pie(user_reviews, "User Reviews")
user_bar_img = f''
user_pie_img = f''
else:
user_bar_img = "No User Reviews Found"
user_pie_img = "No User Reviews Found"
if len(critic) > 0:
critic_polarity = get_polarity_scores(critic)
critic_reviews = analyze_sentiment(critic)
critic_bar = plot_bar(critic_polarity, "Critic Sentiments")
critic_pie = plot_pie(critic_reviews, "Critic Reviews")
critic_bar_img = f''
critic_pie_img = f''
else:
critic_bar_img = "No Critic Reviews Found"
critic_pie_img = "No Critic Reviews Found"
return render_template('review.html', user_bar=user_bar_img, user_pie=user_pie_img, critic_bar=critic_bar_img, critic_pie=critic_pie_img, title=show_info[0], url=url, poster=show_info[1])
else:
return redirect('/')
@app.errorhandler(404)
def not_found_error(error):
return render_template('404.html'), 404
if __name__ == '__main__':
app.run(host='0.0.0.0', port=3000, debug=True)