import os import gradio as gr import requests import base64 from io import BytesIO from PIL import Image count = 0 def image_to_base64(image): buffered = BytesIO() image.save(buffered, format="JPEG", quality=90) return base64.b64encode(buffered.getvalue()).decode('utf-8') def base64_to_image(base64_str): return Image.open(BytesIO(base64.b64decode(base64_str + '=' * (-len(base64_str) % 4)))) def search_face(file): global count url = os.environ.get("SERVER_URL") try: image = Image.open(file) image_base64 = image_to_base64(image) r = requests.post(url=url, headers={"X-RapidAPI-Key": os.environ.get("API_KEY")}, json={"image": image_base64}) except: raise gr.Error("Please select image file!") status_code = r.status_code if status_code == 301: gr.Info("Too many faces in the photo.") elif status_code == 302: gr.Info("Face is not clear enough.") elif status_code == 303: gr.Info("No matches found.") elif status_code == 304: gr.Info("No face in the photo.") elif status_code == 305: gr.Info("Search blocked for privacy issue.") elif status_code == 401: gr.Info("Invalid image format.") elif status_code == 402: gr.Info("Wrong request.") elif status_code == 403: gr.Info("Requests all used in your token.") elif status_code == 404: gr.Info("Timeout, try again.") if status_code > 300: return [], count try: res = r.json().get('img_array') out_array = [] for item in res: out_array.append((base64_to_image(item["image"]), item["url"] + "*********")) count += 1 return out_array, count except: raise gr.Error("Try again.") with gr.Blocks() as demo: gr.Markdown( """ # Search Your Face Online For Free ## For more detailed information, please check on our website.
## [FaceOnLive: On-premises ID Verification, Biometric Authentication Solution Provider](https://faceonlive.com)
## Looking to embed this on your website? Use the HTML code below. ```html ``` """ ) with gr.Row(): with gr.Column(scale=1): image = gr.Image(type='filepath', height=480) search_face_button = gr.Button("Search Face") with gr.Column(scale=2): output = gr.Gallery(label="Found Images", columns=[4], object_fit="contain", height="auto") countwg = gr.Number(label="Count") gr.Examples(['examples/1.jpg', 'examples/2.jpg'], inputs=image, cache_examples=True, cache_mode='lazy', fn=search_face, outputs=[output, countwg]) search_face_button.click(search_face, inputs=image, outputs=[output, countwg], api_name=False) gr.HTML('') demo.queue(api_open=False, default_concurrency_limit=4).launch(server_name="0.0.0.0", server_port=7860, show_api=False)