import os
import gradio as gr
import requests
import base64
from io import BytesIO
from PIL import Image
count = 0
def image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="JPEG", quality=90)
return base64.b64encode(buffered.getvalue()).decode('utf-8')
def base64_to_image(base64_str):
return Image.open(BytesIO(base64.b64decode(base64_str + '=' * (-len(base64_str) % 4))))
def search_face(file):
global count
url = os.environ.get("SERVER_URL")
try:
image = Image.open(file)
image_base64 = image_to_base64(image)
r = requests.post(url=url, headers={"X-RapidAPI-Key": os.environ.get("API_KEY")}, json={"image": image_base64})
except:
raise gr.Error("Please select image file!")
status_code = r.status_code
if status_code == 301:
gr.Info("Too many faces in the photo.")
elif status_code == 302:
gr.Info("Face is not clear enough.")
elif status_code == 303:
gr.Info("No matches found.")
elif status_code == 304:
gr.Info("No face in the photo.")
elif status_code == 305:
gr.Info("Search blocked for privacy issue.")
elif status_code == 401:
gr.Info("Invalid image format.")
elif status_code == 402:
gr.Info("Wrong request.")
elif status_code == 403:
gr.Info("Requests all used in your token.")
elif status_code == 404:
gr.Info("Timeout, try again.")
if status_code > 300:
return [], count
try:
res = r.json().get('img_array')
out_array = []
for item in res:
out_array.append((base64_to_image(item["image"]), item["url"] + "*********"))
count += 1
return out_array, count
except:
raise gr.Error("Try again.")
with gr.Blocks() as demo:
gr.Markdown(
"""
# Search Your Face Online For Free
## For more detailed information, please check on our website.
## [FaceOnLive: On-premises ID Verification, Biometric Authentication Solution Provider](https://faceonlive.com)
## Looking to embed this on your website? Use the HTML code below.
```html
```
"""
)
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(type='filepath', height=480)
search_face_button = gr.Button("Search Face")
with gr.Column(scale=2):
output = gr.Gallery(label="Found Images", columns=[4], object_fit="contain", height="auto")
countwg = gr.Number(label="Count")
gr.Examples(['examples/1.jpg', 'examples/2.jpg'], inputs=image, cache_examples=True, cache_mode='lazy', fn=search_face, outputs=[output, countwg])
search_face_button.click(search_face, inputs=image, outputs=[output, countwg], api_name=False)
gr.HTML('')
demo.queue(api_open=False, default_concurrency_limit=4).launch(server_name="0.0.0.0", server_port=7860, show_api=False)