import sys
import os
import re
import time
import math
import torch
import random
import spaces
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"
import gradio as gr
from TTS.api import TTS
from TTS.utils.manage import ModelManager
max_64_bit_int = 2**63 - 1
model_names = TTS().list_models()
print(model_names.__dict__)
print(model_names.__dir__())
model_name = "tts_models/multilingual/multi-dataset/xtts_v2"
m = model_name
# Automatic device detection
if torch.cuda.is_available():
# cuda only
device_type = "cuda"
device_selection = "cuda:0"
data_type = torch.float16
else:
# no GPU or Amd
device_type = "cpu"
device_selection = "cpu"
data_type = torch.float32
tts = TTS(model_name, gpu=torch.cuda.is_available())
tts.to(device_type)
def update_output(output_number):
return [
gr.update(visible = (2 <= output_number)),
gr.update(visible = (3 <= output_number)),
gr.update(visible = (4 <= output_number)),
gr.update(visible = (5 <= output_number)),
gr.update(visible = (6 <= output_number)),
gr.update(visible = (7 <= output_number)),
gr.update(visible = (8 <= output_number)),
gr.update(visible = (9 <= output_number))
]
def predict0(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 0, generation_number, temperature, is_randomize_seed, seed, progress)
def predict1(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 1, generation_number, temperature, is_randomize_seed, seed, progress)
def predict2(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 2, generation_number, temperature, is_randomize_seed, seed, progress)
def predict3(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 3, generation_number, temperature, is_randomize_seed, seed, progress)
def predict4(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 4, generation_number, temperature, is_randomize_seed, seed, progress)
def predict5(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 5, generation_number, temperature, is_randomize_seed, seed, progress)
def predict6(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 6, generation_number, temperature, is_randomize_seed, seed, progress)
def predict7(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 7, generation_number, temperature, is_randomize_seed, seed, progress)
def predict8(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, generation_number, temperature, is_randomize_seed, seed, progress = gr.Progress()):
return predict(prompt, language, gender, audio_file_pth, mic_file_path, use_mic, 8, generation_number, temperature, is_randomize_seed, seed, progress)
def predict(
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
i,
generation_number,
temperature,
is_randomize_seed,
seed,
progress = gr.Progress()
):
if generation_number <= i:
return (
None,
None,
)
start = time.time()
progress(0, desc = "Preparing data...")
if len(prompt) < 2:
gr.Warning("Please give a longer prompt text")
return (
None,
None,
)
if 50000 < len(prompt):
gr.Warning("Text length limited to 50,000 characters for this demo, please try shorter text")
return (
None,
None,
)
if use_mic:
if mic_file_path is None:
gr.Warning("Please record your voice with Microphone, or uncheck Use Microphone to use reference audios")
return (
None,
None,
)
else:
speaker_wav = mic_file_path
else:
speaker_wav = audio_file_pth
if speaker_wav is None:
if gender == "male":
speaker_wav = "./examples/male.mp3"
else:
speaker_wav = "./examples/female.wav"
output_filename = f"{i + 1}_{re.sub('[^a-zA-Z0-9]', '_', language)}_{re.sub('[^a-zA-Z0-9]', '_', prompt)}"[:180] + ".wav"
try:
if language == "fr":
if m.find("your") != -1:
language = "fr-fr"
if m.find("/fr/") != -1:
language = None
predict_on_gpu(i, generation_number, prompt, speaker_wav, language, output_filename, temperature, is_randomize_seed, seed, progress)
except RuntimeError as e :
if "device-assert" in str(e):
# cannot do anything on cuda device side error, need to restart
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
sys.exit("Exit due to cuda device-assert")
else:
raise e
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
information = ("Start again to get a different result. " if is_randomize_seed else "") + "The sound has been generated in " + ((str(hours) + " h, ") if hours != 0 else "") + ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + str(secondes) + " sec."
return (
output_filename,
information,
)
@spaces.GPU(duration=60)
def predict_on_gpu(
i,
generation_number,
prompt,
speaker_wav,
language,
output_filename,
temperature,
is_randomize_seed,
seed,
progress
):
progress((i + .5) / generation_number, desc = "Generating the audio #" + str(i + 1) + "...")
if is_randomize_seed:
seed = random.randint(0, max_64_bit_int)
random.seed(seed)
torch.manual_seed(seed)
tts.tts_to_file(
text = prompt,
file_path = output_filename,
speaker_wav = speaker_wav,
language = language,
temperature = temperature
)
with gr.Blocks() as interface:
gr.HTML(
"""
XTTS
Generate long vocal from text in several languages following voice freely, without account, without watermark and download it
XTTS is a Voice generation model that lets you clone voices into different languages by using just a quick 3-second audio clip.
XTTS is built on previous research, like Tortoise, with additional architectural innovations and training to make cross-language voice cloning and multilingual speech generation possible.
This is the same model that powers our creator application Coqui Studio as well as the Coqui API. In production we apply modifications to make low-latency streaming possible.
Leave a star on the Github TTS, where our open-source inference and training code lives.
To avoid the queue, you can duplicate this space on CPU, GPU or ZERO space GPU:
"""
)
with gr.Column():
prompt = gr.Textbox(
label = "Text Prompt",
info = "One or two sentences at a time is better",
value = "Hello, World! Here is an example of light voice cloning. Try to upload your best audio samples quality",
elem_id = "prompt-id",
)
with gr.Group():
language = gr.Dropdown(
label="Language",
info="Select an output language for the synthesised speech",
choices=[
["Arabic", "ar"],
["Brazilian Portuguese", "pt"],
["Mandarin Chinese", "zh-cn"],
["Czech", "cs"],
["Dutch", "nl"],
["English", "en"],
["French", "fr"],
["German", "de"],
["Italian", "it"],
["Polish", "pl"],
["Russian", "ru"],
["Spanish", "es"],
["Turkish", "tr"]
],
max_choices=1,
value="en",
elem_id = "language-id",
)
gr.HTML("More languages here")
gender = gr.Radio(
["female", "male"],
label="Gender",
info="Gender of the voice",
elem_id = "gender-id",
)
audio_file_pth = gr.Audio(
label="Reference Audio",
#info="Click on the ✎ button to upload your own target speaker audio",
type="filepath",
value=None,
elem_id = "audio-file-pth-id",
)
mic_file_path = gr.Audio(
sources=["microphone"],
type="filepath",
#info="Use your microphone to record audio",
label="Use Microphone for Reference",
elem_id = "mic-file-path-id",
)
use_mic = gr.Checkbox(
label = "Check to use Microphone as Reference",
value = False,
info = "Notice: Microphone input may not work properly under traffic",
elem_id = "use-mic-id",
)
generation_number = gr.Slider(
minimum = 1,
maximum = 9,
step = 1,
value = 1,
label = "Generation number",
info = "How many audios to generate",
elem_id = "generation-number-id"
)
with gr.Accordion("Advanced options", open = False):
temperature = gr.Slider(
minimum = 0,
maximum = 10,
step = .1,
value = .75,
label = "Temperature",
info = "Maybe useless",
elem_id = "temperature-id"
)
randomize_seed = gr.Checkbox(
label = "\U0001F3B2 Randomize seed",
value = True,
info = "If checked, result is always different",
elem_id = "randomize-seed-id"
)
seed = gr.Slider(
minimum = 0,
maximum = max_64_bit_int,
step = 1,
randomize = True,
label = "Seed",
elem_id = "seed-id"
)
submit = gr.Button(
"🚀 Speak",
variant = "primary",
elem_id = "submit-id"
)
synthesised_audio_1 = gr.Audio(
label="Synthesised Audio #1",
autoplay = False,
elem_id = "synthesised-audio-1-id"
)
synthesised_audio_2 = gr.Audio(
label="Synthesised Audio #2",
autoplay = False,
elem_id = "synthesised-audio-2-id",
visible = False
)
synthesised_audio_3 = gr.Audio(
label="Synthesised Audio #3",
autoplay = False,
elem_id = "synthesised-audio-3-id",
visible = False
)
synthesised_audio_4 = gr.Audio(
label="Synthesised Audio #4",
autoplay = False,
elem_id = "synthesised-audio-4-id",
visible = False
)
synthesised_audio_5 = gr.Audio(
label="Synthesised Audio #5",
autoplay = False,
elem_id = "synthesised-audio-5-id",
visible = False
)
synthesised_audio_6 = gr.Audio(
label="Synthesised Audio #6",
autoplay = False,
elem_id = "synthesised-audio-6-id",
visible = False
)
synthesised_audio_7 = gr.Audio(
label="Synthesised Audio #7",
autoplay = False,
elem_id = "synthesised-audio-7-id",
visible = False
)
synthesised_audio_8 = gr.Audio(
label="Synthesised Audio #8",
autoplay = False,
elem_id = "synthesised-audio-8-id",
visible = False
)
synthesised_audio_9 = gr.Audio(
label="Synthesised Audio #9",
autoplay = False,
elem_id = "synthesised-audio-9-id",
visible = False
)
information = gr.HTML()
gr.Markdown("""
## **XTTS on your computer**
You can install _Pinokio_ locally and then install _XTTS_ into it. It should be quite easy if you have an Nvidia GPU.
You can also install XTTS on your computer using docker but it's more complicate.
""")
submit.click(fn = update_output, inputs = [
generation_number
], outputs = [
synthesised_audio_2,
synthesised_audio_3,
synthesised_audio_4,
synthesised_audio_5,
synthesised_audio_6,
synthesised_audio_7,
synthesised_audio_8,
synthesised_audio_9
], queue = False, show_progress = False).success(predict0, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_1,
information
], scroll_to_output = True).success(predict1, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_2,
information
], scroll_to_output = True).success(predict2, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_3,
information
], scroll_to_output = True).success(predict3, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_4,
information
], scroll_to_output = True).success(predict4, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_5,
information
], scroll_to_output = True).success(predict5, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_6,
information
], scroll_to_output = True).success(predict6, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_7,
information
], scroll_to_output = True).success(predict7, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_8,
information
], scroll_to_output = True).success(predict8, inputs = [
prompt,
language,
gender,
audio_file_pth,
mic_file_path,
use_mic,
generation_number,
temperature,
randomize_seed,
seed
], outputs = [
synthesised_audio_9,
information
], scroll_to_output = True)
interface.queue(max_size = 5).launch(debug=True)