import gradio as gr import requests from PIL import Image import io # URL for FastAPI backend (ensure to replace with your actual FastAPI URL) FASTAPI_URL = "https://fiamenova-aap.hf.space/predict/" def predict_image(image: Image.Image): # Convert PIL image to bytes byte_array = io.BytesIO() image.save(byte_array, format="PNG") byte_array = byte_array.getvalue() # Send the image to FastAPI service for prediction response = requests.post(FASTAPI_URL, files={"image": byte_array}) # Change 'file' to 'image' if response.status_code == 200: return response.json()["prediction"] else: return f"Error: {response.text}" # Create Gradio interface iface = gr.Interface(fn=predict_image, inputs=gr.Image(type="pil"), outputs="text") # Launch the Gradio interface iface.launch()