import gradio as gr from transformers import pipeline from model import BERTBaseUncased from tokenizer import tokenizer import torch from utils import label_full_decoder import sys import config import dataset import engine from model import BERTBaseUncased MODEL = None DEVICE = config.device def get_sentiment(input_text): result = sentiment(input_text) return f"result: {result[0]['label']}", f"score: {result[0]['score']}" def preprocess(text): tokens = T.tokenize(text) print(tokens, file=sys.stderr) ptokens = [] for index, token in enumerate(tokens): if "@" in token: if index > 0: # check if previous token was mention if "@" in tokens[index-1]: pass else: ptokens.append("mention_0") else: ptokens.append("mention_0") else: ptokens.append(token) print(ptokens, file=sys.stderr) return " ".join(ptokens) def sentence_prediction(sentence): sentence = preprocess(sentence) model_path = config.MODEL_PATH test_dataset = dataset.BERTDataset( review=[sentence], target=[0] ) test_data_loader = torch.utils.data.DataLoader( test_dataset, batch_size=config.VALID_BATCH_SIZE, num_workers=3 ) device = config.device model = BERTBaseUncased() model.load_state_dict(torch.load( model_path, map_location=torch.device(device))) model.to(device) outputs, [] = engine.predict_fn(test_data_loader, model, device) print(outputs) return outputs[0] interface = gr.Interface( fn=sentence_prediction, inputs='text', outputs=['text', 'text'], title='Sentiment Analysis', description='Get the positive/negative sentiment for the given input.' ) interface.launch(inline = False)