# -*- coding: utf-8 -*- """model.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1lKXL4Cdum5DiSbczUsadXc0F8j46NM_m # in the name of **allah** """ import torch from transformers import AutoTokenizer, BertForSequenceClassification from datasets import Dataset import pandas as pd import re from hazm import Normalizer, Lemmatizer, word_tokenize, stopwords_list # Initialize Hazm components normalizer = Normalizer() lemmatizer = Lemmatizer() stopwords = stopwords_list() # Load the BERT model for sentiment analysis dataset = Dataset.from_pandas(pd.DataFrame({"Comment": []})) tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased") model = BertForSequenceClassification.from_pretrained("HooshvareLab/bert-fa-base-uncased", num_labels=3) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Tokenization function for sentiment analysis def tokenize_function(examples): return tokenizer(examples["Comment"], padding="max_length", truncation=True, max_length=256, return_tensors='pt') # Sentiment prediction function def predict_sentiment(batch): input_ids = torch.tensor(batch['input_ids']).to(device) attention_mask = torch.tensor(batch['attention_mask']).to(device) with torch.no_grad(): outputs = model(input_ids=input_ids, attention_mask=attention_mask) predictions = torch.argmax(outputs.logits, dim=-1) return {'sentiment': predictions.cpu()} # Mapping sentiment labels sentiment_labels_en = {0: 'منفی', 1: 'خنثی', 2: 'مثبت'} # Adding sentiment prediction to tokenized dataset def predict_sentiment_labels(text): dataset = Dataset.from_dict({"Comment": [text]}) tokenized_dataset = dataset.map(tokenize_function, batched=True) predicted_sentiments = tokenized_dataset.map(predict_sentiment, batched=True) sentiment = predicted_sentiments[0]['sentiment'] return sentiment_labels_en.get(sentiment, 'نامشخص') # Functions from your original code for classifying sentence type and cleaning imperative_verbs = [ 'بیا', 'برو', 'بخواب', 'کن', 'باش', 'بذار', 'فراموش کن', 'بخور', 'بپوش', 'ببخش', 'بنویس', 'دقت کن', 'دست بردار', 'سکوت کن', 'اجازه بده', 'نکن', 'پیش برو', 'خواب بمان', 'توجه کن', 'خوش آمدید', 'حواس‌جمع باش', 'در نظر بگیر', 'بخشید', 'بکش', 'نگذار', 'سعی کن', 'تلاش کن', 'ببین', 'نرو', 'بگیر', 'بگو', 'شک نکن', 'فکر کن', 'عادت کن', 'بیانداز', 'حرکت کن', 'شکایت نکن', 'عاشق شو', 'بخند', 'برگرد', 'بزن', 'آشپزی کن', 'بپذیر', 'شیرینی بپز', 'درس بخوان', 'کلاس بگذار', 'کمک کن', 'بمان', 'راهنمایی کن', 'لطفا' ] def classify_sentence(sentence): sentence = sentence.strip() sentence_type = 'خبری' if re.search(r'چرا|چطور|کجا|آیا|چه|چی|چند|کدام|کی|چندم|چیست|چیه|چندمین|چجوری|کی|چیست|چگونه|؟', sentence) or sentence.endswith('?'): sentence_type = 'پرسشی' elif re.search(r'\b(?:' + '|'.join(imperative_verbs) + r')\b', sentence): sentence_type = 'امری' return sentence_type def clean_text(text): text = re.sub(r'https://\S+|www\.\S+', '', text) text = re.sub(r'[^ا-ی0-9\s#@_؟]', ' ', text) text = re.sub(r'\s+', ' ', text).strip() words = word_tokenize(text) words = [word for word in words if word not in stopwords] words = [lemmatizer.lemmatize(word) for word in words] return ' '.join(words) def process_sentence(sentence): cleaned = clean_text(sentence) sentence_type = classify_sentence(cleaned) sentiment = predict_sentiment_labels(sentence) return f"Type: {sentence_type}\nSentiment: {sentiment}\nCleaned Text: {cleaned}" # Function to process file def process_file(file): try: df = pd.read_csv(file.name) if 'Comment' not in df.columns: return "Error: No 'Comment' column found in the file." # Process comments df['Cleaned_Comment'] = df['Comment'].apply(clean_text) df['Type'] = df['Comment'].apply(classify_sentence) df['Sentiment'] = df['Comment'].apply(predict_sentiment_labels) output_path = "processed_file.csv" df.to_csv(output_path, index=False) return f"File processed successfully! Download it [here](./{output_path})" except Exception as e: return str(e)