# Define default values for parameters # # sdxl light without negative prompt # export BASE_MODEL="stabilityai/stable-diffusion-xl-base-1.0" # export REPO="ByteDance/SDXL-Lightning" # export INFERENCE_STEP=8 # export CKPT="sdxl_lightning_8step_unet.safetensors" # caution!!! ckpt's "N"step must match with inference_step # export CONTROLNET_MODEL="sdxl_light_custom_caption_output/checkpoint-12500/controlnet" # export DATASET="nickpai/coco2017-colorization" # export DATSET_REVISION="custom-caption" # export OUTPUT_DIR="sdxl_light_custom_caption_output/checkpoint-12500" # accelerate launch eval_controlnet_sdxl_light.py \ # --pretrained_model_name_or_path=$BASE_MODEL \ # --repo=$REPO \ # --ckpt=$CKPT \ # --num_inference_steps=$INFERENCE_STEP \ # --controlnet_model_name_or_path=$CONTROLNET_MODEL \ # --dataset=$DATASET \ # --dataset_revision=$DATSET_REVISION \ # --mixed_precision="fp16" \ # --output_dir=$OUTPUT_DIR # sdxl light with negative prompt export BASE_MODEL="stabilityai/stable-diffusion-xl-base-1.0" export REPO="ByteDance/SDXL-Lightning" export INFERENCE_STEP=8 export CKPT="sdxl_lightning_8step_unet.safetensors" # caution!!! ckpt's "N"step must match with inference_step export CONTROLNET_MODEL="sdxl_light_caption_output/checkpoint-22500/controlnet" export DATASET="nickpai/coco2017-colorization" export DATSET_REVISION="custom-caption" export OUTPUT_DIR="sdxl_light_caption_output/checkpoint-22500" accelerate launch eval_controlnet_sdxl_light.py \ --pretrained_model_name_or_path=$BASE_MODEL \ --repo=$REPO \ --ckpt=$CKPT \ --num_inference_steps=$INFERENCE_STEP \ --controlnet_model_name_or_path=$CONTROLNET_MODEL \ --dataset=$DATASET \ --dataset_revision=$DATSET_REVISION \ --mixed_precision="fp16" \ --output_dir=$OUTPUT_DIR \ --negative_prompt