ErnestBeckham commited on
Commit
7b3b633
·
1 Parent(s): 5ff4ff7

update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -2
app.py CHANGED
@@ -1,10 +1,13 @@
1
  import streamlit as st
 
2
  from transformers import (GPT2Tokenizer, GPT2ForSequenceClassification)
3
 
 
 
4
  model = GPT2ForSequenceClassification.from_pretrained(pretrained_model_name_or_path='ErnestBeckham/gpt-2-finetuned-ai-content')
5
  tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path='ErnestBeckham/gpt2-tokenizer-ai-content')
6
 
7
- text = st.text_area("Paste your Content")
8
 
9
  if text:
10
  tokenized_input = tokenizer(text, return_tensors='pt')
@@ -13,4 +16,4 @@ if text:
13
 
14
  logits = outputs.logits
15
  predicted_class = torch.argmax(logits, dim=-1).item()
16
- st.json(predicted_class)
 
1
  import streamlit as st
2
+ import torch
3
  from transformers import (GPT2Tokenizer, GPT2ForSequenceClassification)
4
 
5
+ labels_ids = {0: "Human Generated", 1: "AI Generated"}
6
+
7
  model = GPT2ForSequenceClassification.from_pretrained(pretrained_model_name_or_path='ErnestBeckham/gpt-2-finetuned-ai-content')
8
  tokenizer = GPT2Tokenizer.from_pretrained(pretrained_model_name_or_path='ErnestBeckham/gpt2-tokenizer-ai-content')
9
 
10
+ text = st.text_area("Paste your Content (512 word limit)")
11
 
12
  if text:
13
  tokenized_input = tokenizer(text, return_tensors='pt')
 
16
 
17
  logits = outputs.logits
18
  predicted_class = torch.argmax(logits, dim=-1).item()
19
+ st.write(f'Predicted Label: {labels_ids[predicted_class]}')