ErenKontas commited on
Commit
c60057d
·
verified ·
1 Parent(s): 0c161f8

Upload 6 files

Browse files
Derin Öğrenme Sınıflandırması ile Çok Sınıflı Obezite Riski Tahmini - Derin Öğrenme Sınıflandırması ile Çok Sınıflı Obezite Riski Tahmin.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
Obezite.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a295b837d2204265fa7ebf9cef1c3347335d52b4259f5c687eb820eb92981721
3
+ size 677372
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import pickle
5
+
6
+ # Load the model and scaler
7
+ model = pickle.load(open('Obezite.pkl', 'rb'))
8
+ scaler = pickle.load(open('scaler.pkl', 'rb'))
9
+
10
+ st.title("Obesity Prediction")
11
+
12
+ # Input fields
13
+ gender = st.selectbox("Gender", ("Male", "Female"))
14
+ age = st.number_input("Age", min_value=0)
15
+ height = st.number_input("Height (m)", min_value=0.0)
16
+ weight = st.number_input("Weight (kg)", min_value=0.0)
17
+ cholesterol = st.number_input("Cholesterol Level", min_value=0)
18
+ blood_pressure = st.number_input("Blood Pressure", min_value=0)
19
+ smoking = st.selectbox("Smoking Status", ("Non-Smoker", "Smoker"))
20
+ alcohol_consumption = st.selectbox("Alcohol Consumption", ("No", "Yes"))
21
+ physical_activity = st.selectbox("Physical Activity Level", ("Low", "Moderate", "High"))
22
+ diet_quality = st.selectbox("Diet Quality", ("Poor", "Average", "Good"))
23
+ family_history_with_overweight = st.selectbox("Family History of Obesity", ("No", "Yes"))
24
+ FAVC = st.selectbox("Frequency of Eating Fatty Foods", ("No", "Yes"))
25
+ FCVC = st.number_input("Frequency of Vegetables Consumption", min_value=0)
26
+ NCP = st.number_input("Number of Main Meals", min_value=1)
27
+ CAEC = st.selectbox("Consumption of Food Between Meals", ("No", "Yes"))
28
+ CH2O = st.number_input("Water Consumption (L)", min_value=0.0)
29
+ SCC = st.number_input("Consumption of Sugar-Sweetened Beverages", min_value=0)
30
+ FAF = st.number_input("Physical Activity Level (1-5)", min_value=1, max_value=5)
31
+ TUE = st.number_input("Time Spent on Physical Activity", min_value=0)
32
+ CALC = st.selectbox("Caloric Intake", ("Low", "Moderate", "High"))
33
+ MTRANS = st.selectbox("Transportation Type", ("Walking", "Public Transport", "Private Vehicle"))
34
+
35
+ # Prepare input data for prediction
36
+ input_data = pd.DataFrame({
37
+ 'Gender': [gender],
38
+ 'Age': [age],
39
+ 'Height': [height],
40
+ 'Weight': [weight],
41
+ 'family_history_with_overweight': [1 if family_history_with_overweight == "Yes" else 0],
42
+ 'FAVC': [1 if FAVC == "Yes" else 0],
43
+ 'FCVC': [FCVC],
44
+ 'NCP': [NCP],
45
+ 'CAEC': [1 if CAEC == "Yes" else 0],
46
+ 'SMOKE': [1 if smoking == "Smoker" else 0],
47
+ 'CH2O': [CH2O],
48
+ 'SCC': [SCC],
49
+ 'FAF': [FAF],
50
+ 'TUE': [TUE],
51
+ 'CALC': [CALC],
52
+ 'MTRANS': [MTRANS],
53
+ })
54
+
55
+ # Convert categorical variables into dummy/indicator variables
56
+ input_data = pd.get_dummies(input_data, drop_first=True)
57
+
58
+ # Ensure the same features are present as in the scaler
59
+ input_data = input_data.reindex(columns=scaler.get_feature_names_out(), fill_value=0)
60
+
61
+ # Prediction button
62
+ if st.button('Predict'):
63
+ input_scaled = scaler.transform(input_data) # Scale the input data
64
+ prediction = model.predict(input_scaled) # Get the prediction
65
+ predicted_class = np.argmax(prediction, axis=1) # Get the predicted class
66
+ st.write(f"Predicted class: {predicted_class[0]}")
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ streamlit
2
+ scikit-learn
3
+ pandas
4
+ tensorflow
scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b416be148333fb8871df66f8abee5fb8b96b3121f4704e8395214070ba31e8
3
+ size 1741
train.csv ADDED
The diff for this file is too large to render. See raw diff