import streamlit as st from tensorflow.keras.models import load_model from PIL import Image import numpy as np import pandas as pd model = load_model('Mantar_CNN_model.keras') def process_image(img): img = img.resize((64, 64)) img = img.convert('RGB') img = np.array(img) img = img / 255.0 img = np.expand_dims(img, axis=0) return img df = pd.read_csv('train.csv') class_names = df['Mushroom'].unique() st.write("Resim seç ve model ne olduğunu tahmin etsin") file = st.file_uploader('Bir resim seç', type=['jpg', 'jpeg', 'png']) if file is not None: img = Image.open(file) st.image(img, caption='Yüklenen resim', use_column_width=True) image = process_image(img) prediction = model.predict(image) predicted_class = np.argmax(prediction, axis=1)[0] st.write(f"Tahmin edilen sınıf: {class_names[predicted_class]}")