Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- Sigorta.pkl +3 -0
- app.py +68 -0
- derin-renim-classification-ile-sigorta-apraz-sa.ipynb +0 -0
- requirements.txt +4 -0
- scaler.pkl +3 -0
Sigorta.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:488fcba24d1edcaa614b57b8d03c43b970e65215ed766519508b2606ae68e093
|
3 |
+
size 4525961
|
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
import joblib
|
5 |
+
|
6 |
+
from sklearn.preprocessing import StandardScaler,OneHotEncoder
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.compose import ColumnTransformer
|
9 |
+
|
10 |
+
df = pd.read_csv('train.csv')
|
11 |
+
|
12 |
+
x = df.drop(['id', 'Response'], axis=1)
|
13 |
+
y = df[['Response']]
|
14 |
+
|
15 |
+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
|
16 |
+
|
17 |
+
preprocessor = ColumnTransformer(
|
18 |
+
transformers=[
|
19 |
+
('num', StandardScaler(), ['Age','Driving_License','Region_Code','Previously_Insured','Annual_Premium','Policy_Sales_Channel','Vintage']),
|
20 |
+
('cat', OneHotEncoder(), ['Gender','Vehicle_Age','Vehicle_Damage'])
|
21 |
+
]
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
# Prediction function
|
26 |
+
def mantar_pred(Gender, Age, Driving_License, Region_Code, Previously_Insured, Vehicle_Age, Vehicle_Damage, Annual_Premium, Policy_Sales_Channel, Vintage):
|
27 |
+
input_data = pd.DataFrame({
|
28 |
+
'Gender': [Gender],
|
29 |
+
'Age': [Age],
|
30 |
+
'Driving_License': [Driving_License],
|
31 |
+
'Region_Code': [Region_Code],
|
32 |
+
'Previously_Insured': [Previously_Insured],
|
33 |
+
'Vehicle_Age': [Vehicle_Age],
|
34 |
+
'Vehicle_Damage': [Vehicle_Damage],
|
35 |
+
'Annual_Premium': [Annual_Premium],
|
36 |
+
'Policy_Sales_Channel': [Policy_Sales_Channel],
|
37 |
+
'Vintage': [Vintage]
|
38 |
+
})
|
39 |
+
|
40 |
+
input_data_transformed = preprocessor.fit_transform(input_data)
|
41 |
+
|
42 |
+
model = joblib.load('Sigorta.pkl')
|
43 |
+
|
44 |
+
prediction = model.predict(input_data_transformed)
|
45 |
+
return float(prediction[0])
|
46 |
+
|
47 |
+
# Streamlit UI
|
48 |
+
def main():
|
49 |
+
st.title("Sigorta Poliçesi Satış Tahmini")
|
50 |
+
st.write("Veri Gir")
|
51 |
+
|
52 |
+
Gender = st.selectbox('Gender', df['Gender'].unique())
|
53 |
+
Age = st.slider('Age', int(df['Age'].min()), int(df['Age'].max()))
|
54 |
+
Driving_License = st.selectbox('Driving_License', df['Driving_License'].unique())
|
55 |
+
Region_Code = st.selectbox('Region_Code', df['Region_Code'].unique())
|
56 |
+
Previously_Insured = st.selectbox('Previously_Insured', df['Previously_Insured'].unique())
|
57 |
+
Vehicle_Age = st.selectbox('Vehicle_Age', df['Vehicle_Age'].unique())
|
58 |
+
Vehicle_Damage = st.selectbox('Vehicle_Damage', df['Vehicle_Damage'].unique())
|
59 |
+
Annual_Premium = st.slider('Annual_Premium', float(df['Annual_Premium'].min()), float(df['Annual_Premium'].max()))
|
60 |
+
Policy_Sales_Channel = st.selectbox('Policy_Sales_Channel', df['Policy_Sales_Channel'].unique())
|
61 |
+
Vintage = st.slider('Vintage', int(df['Vintage'].min()), int(df['Vintage'].max()))
|
62 |
+
|
63 |
+
if st.button('Predict'):
|
64 |
+
result = mantar_pred(Gender, Age, Driving_License, Region_Code, Previously_Insured, Vehicle_Age, Vehicle_Damage, Annual_Premium, Policy_Sales_Channel, Vintage)
|
65 |
+
st.write(f'The predicted result is: {result:.2f}')
|
66 |
+
|
67 |
+
if __name__ == '__main__':
|
68 |
+
main()
|
derin-renim-classification-ile-sigorta-apraz-sa.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
scikit-learn
|
3 |
+
pandas
|
4 |
+
tensorflow
|
scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2673b71eebc72002646253c511278dd0281b194b18bbbb7ecf5141c78b3b878b
|
3 |
+
size 1070
|