""" Mostly copy-paste from DINO and timm library: https://github.com/facebookresearch/dino https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py """ import warnings import math import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from timm.models.layers import trunc_normal_, drop_path, to_2tuple from functools import partial def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), **kwargs } class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape q, k, v = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath( drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.window_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.num_patches_w, self.num_patches_h = self.window_size self.num_patches = self.window_size[0] * self.window_size[1] self.img_size = img_size self.patch_size = patch_size self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): x = self.proj(x) return x class HybridEmbed(nn.Module): """ CNN Feature Map Embedding Extract feature map from CNN, flatten, project to embedding dim. """ def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768): super().__init__() assert isinstance(backbone, nn.Module) img_size = to_2tuple(img_size) self.img_size = img_size self.backbone = backbone if feature_size is None: with torch.no_grad(): # FIXME this is hacky, but most reliable way of determining the exact dim of the output feature # map for all networks, the feature metadata has reliable channel and stride info, but using # stride to calc feature dim requires info about padding of each stage that isn't captured. training = backbone.training if training: backbone.eval() o = self.backbone(torch.zeros( 1, in_chans, img_size[0], img_size[1]))[-1] feature_size = o.shape[-2:] feature_dim = o.shape[1] backbone.train(training) else: feature_size = to_2tuple(feature_size) feature_dim = self.backbone.feature_info.channels()[-1] self.num_patches = feature_size[0] * feature_size[1] self.proj = nn.Linear(feature_dim, embed_dim) def forward(self, x): x = self.backbone(x)[-1] x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class ViT(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, model_name='vit_base_patch16_224', img_size=384, patch_size=16, in_chans=3, embed_dim=1024, depth=24, num_heads=16, num_classes=19, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0.1, attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=partial(nn.LayerNorm, eps=1e-6), norm_cfg=None, pos_embed_interp=False, random_init=False, align_corners=False, use_checkpoint=False, num_extra_tokens=1, out_features=None, **kwargs, ): super(ViT, self).__init__() self.model_name = model_name self.img_size = img_size self.patch_size = patch_size self.in_chans = in_chans self.embed_dim = embed_dim self.depth = depth self.num_heads = num_heads self.num_classes = num_classes self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.drop_rate = drop_rate self.attn_drop_rate = attn_drop_rate self.drop_path_rate = drop_path_rate self.hybrid_backbone = hybrid_backbone self.norm_layer = norm_layer self.norm_cfg = norm_cfg self.pos_embed_interp = pos_embed_interp self.random_init = random_init self.align_corners = align_corners self.use_checkpoint = use_checkpoint self.num_extra_tokens = num_extra_tokens self.out_features = out_features self.out_indices = [int(name[5:]) for name in out_features] # self.num_stages = self.depth # self.out_indices = tuple(range(self.num_stages)) if self.hybrid_backbone is not None: self.patch_embed = HybridEmbed( self.hybrid_backbone, img_size=self.img_size, in_chans=self.in_chans, embed_dim=self.embed_dim) else: self.patch_embed = PatchEmbed( img_size=self.img_size, patch_size=self.patch_size, in_chans=self.in_chans, embed_dim=self.embed_dim) self.num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) if self.num_extra_tokens == 2: self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) self.pos_embed = nn.Parameter(torch.zeros( 1, self.num_patches + self.num_extra_tokens, self.embed_dim)) self.pos_drop = nn.Dropout(p=self.drop_rate) # self.num_extra_tokens = self.pos_embed.shape[-2] - self.num_patches dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, self.depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=self.embed_dim, num_heads=self.num_heads, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale, drop=self.drop_rate, attn_drop=self.attn_drop_rate, drop_path=dpr[i], norm_layer=self.norm_layer) for i in range(self.depth)]) # NOTE as per official impl, we could have a pre-logits representation dense layer + tanh here # self.repr = nn.Linear(embed_dim, representation_size) # self.repr_act = nn.Tanh() if patch_size == 16: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), nn.SyncBatchNorm(embed_dim), nn.GELU(), nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) elif patch_size == 8: self.fpn1 = nn.Sequential( nn.ConvTranspose2d(embed_dim, embed_dim, kernel_size=2, stride=2), ) self.fpn2 = nn.Identity() self.fpn3 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), ) self.fpn4 = nn.Sequential( nn.MaxPool2d(kernel_size=4, stride=4), ) trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) if self.num_extra_tokens==2: trunc_normal_(self.dist_token, std=0.2) self.apply(self._init_weights) # self.fix_init_weight() def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) rescale(layer.mlp.fc2.weight.data, layer_id + 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) ''' def init_weights(self): logger = get_root_logger() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) if self.init_cfg is None: logger.warn(f'No pre-trained weights for ' f'{self.__class__.__name__}, ' f'training start from scratch') else: assert 'checkpoint' in self.init_cfg, f'Only support ' \ f'specify `Pretrained` in ' \ f'`init_cfg` in ' \ f'{self.__class__.__name__} ' logger.info(f"Will load ckpt from {self.init_cfg['checkpoint']}") load_checkpoint(self, filename=self.init_cfg['checkpoint'], strict=False, logger=logger) ''' def get_num_layers(self): return len(self.blocks) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def _conv_filter(self, state_dict, patch_size=16): """ convert patch embedding weight from manual patchify + linear proj to conv""" out_dict = {} for k, v in state_dict.items(): if 'patch_embed.proj.weight' in k: v = v.reshape((v.shape[0], 3, patch_size, patch_size)) out_dict[k] = v return out_dict def to_2D(self, x): n, hw, c = x.shape h = w = int(math.sqrt(hw)) x = x.transpose(1, 2).reshape(n, c, h, w) return x def to_1D(self, x): n, c, h, w = x.shape x = x.reshape(n, c, -1).transpose(1, 2) return x def interpolate_pos_encoding(self, x, w, h): npatch = x.shape[1] - self.num_extra_tokens N = self.pos_embed.shape[1] - self.num_extra_tokens if npatch == N and w == h: return self.pos_embed class_ORdist_pos_embed = self.pos_embed[:, 0:self.num_extra_tokens] patch_pos_embed = self.pos_embed[:, self.num_extra_tokens:] dim = x.shape[-1] w0 = w // self.patch_embed.patch_size[0] h0 = h // self.patch_embed.patch_size[1] # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 w0, h0 = w0 + 0.1, h0 + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(0, 3, 1, 2), scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)), mode='bicubic', ) assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1] patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_ORdist_pos_embed, patch_pos_embed), dim=1) def prepare_tokens(self, x, mask=None): B, nc, w, h = x.shape # patch linear embedding x = self.patch_embed(x) # mask image modeling if mask is not None: x = self.mask_model(x, mask) x = x.flatten(2).transpose(1, 2) # add the [CLS] token to the embed patch tokens all_tokens = [self.cls_token.expand(B, -1, -1)] if self.num_extra_tokens == 2: dist_tokens = self.dist_token.expand(B, -1, -1) all_tokens.append(dist_tokens) all_tokens.append(x) x = torch.cat(all_tokens, dim=1) # add positional encoding to each token x = x + self.interpolate_pos_encoding(x, w, h) return self.pos_drop(x) def forward_features(self, x): # print(f"==========shape of x is {x.shape}==========") B, _, H, W = x.shape Hp, Wp = H // self.patch_size, W // self.patch_size x = self.prepare_tokens(x) features = [] for i, blk in enumerate(self.blocks): if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if i in self.out_indices: xp = x[:, self.num_extra_tokens:, :].permute(0, 2, 1).reshape(B, -1, Hp, Wp) features.append(xp.contiguous()) ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) feat_out = {} for name, value in zip(self.out_features, features): feat_out[name] = value return feat_out def forward(self, x): x = self.forward_features(x) return x def deit_base_patch16(pretrained=False, **kwargs): model = ViT( patch_size=16, drop_rate=0., embed_dim=768, depth=12, num_heads=12, num_classes=1000, mlp_ratio=4., qkv_bias=True, use_checkpoint=True, num_extra_tokens=2, **kwargs) model.default_cfg = _cfg() return model def mae_base_patch16(pretrained=False, **kwargs): model = ViT( patch_size=16, drop_rate=0., embed_dim=768, depth=12, num_heads=12, num_classes=1000, mlp_ratio=4., qkv_bias=True, use_checkpoint=True, num_extra_tokens=1, **kwargs) model.default_cfg = _cfg() return model