from transformers import DetrImageProcessor, DetrForObjectDetection import torch from PIL import Image, ImageDraw import gradio as gr import requests import random def detect_objects(image): # Load the pre-trained DETR model processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) # convert outputs (bounding boxes and class logits) to COCO API # let's only keep detections with score > 0.9 target_sizes = torch.tensor([image.size[::-1]]) results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0] # Draw bounding boxes and labels on the image draw = ImageDraw.Draw(image) for i, (score, label, box) in enumerate(zip(results["scores"], results["labels"], results["boxes"])): box = [round(i, 2) for i in box.tolist()] color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) draw.rectangle(box, outline=color, width=3) draw.text((box[0], box[1]), model.config.id2label[label.item()], fill=color) return image def upload_image(file): image = Image.open(file.name) image_with_boxes = detect_objects(image) return image_with_boxes iface = gr.Interface( fn=upload_image, inputs="file", outputs="image", title="Object Detection", description="Upload an image and detect objects using DETR model.", allow_flagging=False ) iface.launch()