import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import gradio as gr # Load data nexus_bank = pd.read_csv('nexus_bank_dataa.csv') # Preprocessing X = nexus_bank[['salary', 'dependents']] y = nexus_bank['defaulter'] # Train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=90) # Model training knn_classifier = KNeighborsClassifier() knn_classifier.fit(X_train, y_train) # Prediction function def predict_defaulter(salary, dependents): input_data = [[salary, dependents]] knn_predict = knn_classifier.predict(input_data) return "Yes! It's a Defaulter" if knn_predict[0] == 1 else "No! It's not a Defaulter" # Interface interface = gr.Interface( fn=predict_defaulter, inputs=["number", "number"], outputs="text", title="Defaulter Prediction", description="This app predicts whether an individual is likely to default based on their salary and number of dependents. Input the respective values and get instant predictions." ) # Launch the interface interface.launch()