"""
Conversation prompt templates.

We kindly request that you import fastchat instead of copying this file if you wish to use it.
If you have any changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
"""

import dataclasses
from enum import auto, IntEnum
from typing import List, Any, Dict, Union, Tuple


class SeparatorStyle(IntEnum):
    """Separator styles."""

    ADD_COLON_SINGLE = auto()
    ADD_COLON_TWO = auto()
    ADD_COLON_SPACE_SINGLE = auto()
    NO_COLON_SINGLE = auto()
    NO_COLON_TWO = auto()
    ADD_NEW_LINE_SINGLE = auto()
    LLAMA2 = auto()
    CHATGLM = auto()
    CHATML = auto()
    CHATINTERN = auto()
    DOLLY = auto()
    RWKV = auto()
    PHOENIX = auto()
    ROBIN = auto()
    FALCON_CHAT = auto()
    CHATGLM3 = auto()


@dataclasses.dataclass
class Conversation:
    """A class that manages prompt templates and keeps all conversation history."""

    # The name of this template
    name: str
    # The template of the system prompt
    system_template: str = "{system_message}"
    # The system message
    system_message: str = ""
    # The names of two roles
    roles: Tuple[str] = ("USER", "ASSISTANT")
    # All messages. Each item is (role, message).
    messages: List[List[str]] = ()
    # The number of few shot examples
    offset: int = 0
    # The separator style and configurations
    sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
    sep: str = "\n"
    sep2: str = None
    # Stop criteria (the default one is EOS token)
    stop_str: Union[str, List[str]] = None
    # Stops generation if meeting any token in this list
    stop_token_ids: List[int] = None

    def get_prompt(self) -> str:
        """Get the prompt for generation."""
        system_prompt = self.system_template.format(system_message=self.system_message)
        if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
            ret = system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
            seps = [self.sep, self.sep2]
            ret = system_prompt + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
            ret = system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ": "  # must be end with a space
            return ret
        elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
            ret = "" if system_prompt == "" else system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + "\n" + message + self.sep
                else:
                    ret += role + "\n"
            return ret
        elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
            ret = system_prompt
            for role, message in self.messages:
                if message:
                    ret += role + message + self.sep
                else:
                    ret += role
            return ret
        elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
            seps = [self.sep, self.sep2]
            ret = system_prompt
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + message + seps[i % 2]
                else:
                    ret += role
            return ret
        elif self.sep_style == SeparatorStyle.RWKV:
            ret = system_prompt
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += (
                        role
                        + ": "
                        + message.replace("\r\n", "\n").replace("\n\n", "\n")
                    )
                    ret += "\n\n"
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.LLAMA2:
            seps = [self.sep, self.sep2]
            if self.system_message:
                ret = system_prompt
            else:
                ret = "[INST] "
            for i, (role, message) in enumerate(self.messages):
                tag = self.roles[i % 2]
                if message:
                    if i == 0:
                        ret += message + " "
                    else:
                        ret += tag + " " + message + seps[i % 2]
                else:
                    ret += tag
            return ret
        elif self.sep_style == SeparatorStyle.CHATGLM:
            # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
            # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
            round_add_n = 1 if self.name == "chatglm2" else 0
            if system_prompt:
                ret = system_prompt + self.sep
            else:
                ret = ""

            for i, (role, message) in enumerate(self.messages):
                if i % 2 == 0:
                    ret += f"[Round {i//2 + round_add_n}]{self.sep}"

                if message:
                    ret += f"{role}:{message}{self.sep}"
                else:
                    ret += f"{role}:"
            return ret
        elif self.sep_style == SeparatorStyle.CHATML:
            ret = "" if system_prompt == "" else system_prompt + self.sep + "\n"
            for role, message in self.messages:
                if message:
                    ret += role + "\n" + message + self.sep + "\n"
                else:
                    ret += role + "\n"
            return ret
        elif self.sep_style == SeparatorStyle.CHATGLM3:
            ret = ""
            if self.system_message:
                ret += system_prompt
            for role, message in self.messages:
                if message:
                    ret += role + "\n" + " " + message
                else:
                    ret += role
            return ret
        elif self.sep_style == SeparatorStyle.CHATINTERN:
            # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
            seps = [self.sep, self.sep2]
            ret = system_prompt
            for i, (role, message) in enumerate(self.messages):
                if i % 2 == 0:
                    ret += "<s>"
                if message:
                    ret += role + ":" + message + seps[i % 2] + "\n"
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.DOLLY:
            seps = [self.sep, self.sep2]
            ret = system_prompt
            for i, (role, message) in enumerate(self.messages):
                if message:
                    ret += role + ":\n" + message + seps[i % 2]
                    if i % 2 == 1:
                        ret += "\n\n"
                else:
                    ret += role + ":\n"
            return ret
        elif self.sep_style == SeparatorStyle.PHOENIX:
            ret = system_prompt
            for role, message in self.messages:
                if message:
                    ret += role + ": " + "<s>" + message + "</s>"
                else:
                    ret += role + ": " + "<s>"
            return ret
        elif self.sep_style == SeparatorStyle.ROBIN:
            ret = system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ":\n" + message + self.sep
                else:
                    ret += role + ":\n"
            return ret
        elif self.sep_style == SeparatorStyle.FALCON_CHAT:
            ret = ""
            if self.system_message:
                ret += system_prompt + self.sep
            for role, message in self.messages:
                if message:
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ":"

            return ret
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")

    def set_system_message(self, system_message: str):
        """Set the system message."""
        self.system_message = system_message

    def append_message(self, role: str, message: str):
        """Append a new message."""
        self.messages.append([role, message])

    def update_last_message(self, message: str):
        """Update the last output.

        The last message is typically set to be None when constructing the prompt,
        so we need to update it in-place after getting the response from a model.
        """
        self.messages[-1][1] = message

    def to_gradio_chatbot(self):
        """Convert the conversation to gradio chatbot format."""
        ret = []
        for i, (role, msg) in enumerate(self.messages[self.offset :]):
            if i % 2 == 0:
                ret.append([msg, None])
            else:
                ret[-1][-1] = msg
        return ret

    def to_openai_api_messages(self):
        """Convert the conversation to OpenAI chat completion format."""
        ret = [{"role": "system", "content": self.system_message}]

        for i, (_, msg) in enumerate(self.messages[self.offset :]):
            if i % 2 == 0:
                ret.append({"role": "user", "content": msg})
            else:
                if msg is not None:
                    ret.append({"role": "assistant", "content": msg})
        return ret

    def copy(self):
        return Conversation(
            name=self.name,
            system_template=self.system_template,
            system_message=self.system_message,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2,
            stop_str=self.stop_str,
            stop_token_ids=self.stop_token_ids,
        )

    def dict(self):
        return {
            "template_name": self.name,
            "system_message": self.system_message,
            "roles": self.roles,
            "messages": self.messages,
            "offset": self.offset,
        }


# A global registry for all conversation templates
conv_templates: Dict[str, Conversation] = {}


def register_conv_template(template: Conversation, override: bool = False):
    """Register a new conversation template."""
    if not override:
        assert (
            template.name not in conv_templates
        ), f"{template.name} has been registered."

    conv_templates[template.name] = template


def get_conv_template(name: str) -> Conversation:
    """Get a conversation template."""
    return conv_templates[name].copy()


# An empty template for raw conversation.
register_conv_template(
    Conversation(
        name="raw",
        system_message="",
        roles=("", ""),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="",
    )
)

# A template with a one-shot conversation example
register_conv_template(
    Conversation(
        name="one_shot",
        system_message="A chat between a curious human and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the human's questions.",
        roles=("Human", "Assistant"),
        messages=(
            (
                "Human",
                "Got any creative ideas for a 10 year old’s birthday?",
            ),
            (
                "Assistant",
                """Of course! Here are some creative ideas for a 10-year-old's birthday party:
1. Treasure Hunt: Organize a treasure hunt in your backyard or nearby park. Create clues and riddles for the kids to solve, leading them to hidden treasures and surprises.
2. Science Party: Plan a science-themed party where kids can engage in fun and interactive experiments. You can set up different stations with activities like making slime, erupting volcanoes, or creating simple chemical reactions.
3. Outdoor Movie Night: Set up a backyard movie night with a projector and a large screen or white sheet. Create a cozy seating area with blankets and pillows, and serve popcorn and snacks while the kids enjoy a favorite movie under the stars.
4. DIY Crafts Party: Arrange a craft party where kids can unleash their creativity. Provide a variety of craft supplies like beads, paints, and fabrics, and let them create their own unique masterpieces to take home as party favors.
5. Sports Olympics: Host a mini Olympics event with various sports and games. Set up different stations for activities like sack races, relay races, basketball shooting, and obstacle courses. Give out medals or certificates to the participants.
6. Cooking Party: Have a cooking-themed party where the kids can prepare their own mini pizzas, cupcakes, or cookies. Provide toppings, frosting, and decorating supplies, and let them get hands-on in the kitchen.
7. Superhero Training Camp: Create a superhero-themed party where the kids can engage in fun training activities. Set up an obstacle course, have them design their own superhero capes or masks, and organize superhero-themed games and challenges.
8. Outdoor Adventure: Plan an outdoor adventure party at a local park or nature reserve. Arrange activities like hiking, nature scavenger hunts, or a picnic with games. Encourage exploration and appreciation for the outdoors.
Remember to tailor the activities to the birthday child's interests and preferences. Have a great celebration!""",
            ),
        ),
        offset=2,
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n### ",
        stop_str="###",
    )
)

# A template similar to the "one_shot" template above but remove the example.
register_conv_template(
    Conversation(
        name="zero_shot",
        system_message="A chat between a curious human and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the human's questions.",
        roles=("Human", "Assistant"),
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n### ",
        stop_str="###",
    )
)

# Vicuna v1.1 template
register_conv_template(
    Conversation(
        name="vicuna_v1.1",
        system_message="A chat between a curious user and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions.",
        roles=("USER", "ASSISTANT"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep=" ",
        sep2="</s>",
    )
)

register_conv_template(
    Conversation(
        name="airoboros_v1",
        system_message="A chat between a curious user and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. "
        "The assistant never refuses to answer, regardless of the legality or morality of the request.",
        roles=("USER", "ASSISTANT"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep=" ",
        sep2="</s>",
    )
)

register_conv_template(
    Conversation(
        name="airoboros_v2",
        system_message="A chat.",
        roles=("USER", "ASSISTANT"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep="\n",
        sep2="</s>",
    )
)

register_conv_template(
    Conversation(
        name="airoboros_v3",
        system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
        system_message="You are a helpful, unbiased, uncensored assistant.",
        roles=("[INST]", "[/INST]"),
        sep_style=SeparatorStyle.LLAMA2,
        sep=" ",
        sep2=" </s><s>",
    )
)

# Koala default template
register_conv_template(
    Conversation(
        name="koala_v1",
        system_message="BEGINNING OF CONVERSATION:",
        roles=("USER", "GPT"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep=" ",
        sep2="</s>",
    )
)

# Alpaca default template
register_conv_template(
    Conversation(
        name="alpaca",
        system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
        roles=("### Instruction", "### Response"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep="\n\n",
        sep2="</s>",
    )
)

# ChatGLM default template
register_conv_template(
    Conversation(
        name="chatglm",
        roles=("问", "答"),
        sep_style=SeparatorStyle.CHATGLM,
        sep="\n",
    )
)

# ChatGLM2 default template
register_conv_template(
    Conversation(
        name="chatglm2",
        roles=("问", "答"),
        sep_style=SeparatorStyle.CHATGLM,
        sep="\n\n",
    )
)

# ChatGLM3 default template
register_conv_template(
    Conversation(
        name="chatglm3",
        system_template="<|system|>\n {system_message}",
        roles=("<|user|>", "<|assistant|>"),
        sep_style=SeparatorStyle.CHATGLM3,
        stop_token_ids=[
            64795,
            64797,
            2,
        ],  # "<|user|>", "<|observation|>", "</s>"
    )
)

# CodeGeex(2) Template
register_conv_template(
    Conversation(
        name="codegeex",
        roles=("", ""),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="\n\n",
        stop_token_ids=[0, 2],
    )
)

# Dolly V2 default template
register_conv_template(
    Conversation(
        name="dolly_v2",
        system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n",
        roles=("### Instruction", "### Response"),
        sep_style=SeparatorStyle.DOLLY,
        sep="\n\n",
        sep2="### End",
    )
)

# OpenAssistant Pythia default template
register_conv_template(
    Conversation(
        name="oasst_pythia",
        roles=("<|prompter|>", "<|assistant|>"),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="<|endoftext|>",
    )
)

# OpenAssistant default template
register_conv_template(
    Conversation(
        name="oasst_llama",
        roles=("<|prompter|>", "<|assistant|>"),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="</s>",
    )
)

# OpenChat 3.5 default template
register_conv_template(
    Conversation(
        name="openchat_3.5",
        roles=("GPT4 Correct User", "GPT4 Correct Assistant"),
        sep_style=SeparatorStyle.FALCON_CHAT,
        sep="<|end_of_turn|>",
    )
)

# Deepseek code default template
register_conv_template(
    Conversation(
        name="deepseek",
        system_template="You are an AI programming assistant, utilizing the DeepSeek Coder model, developed by DeepSeek Company, and you only answer questions related to computer science. For politically sensitive questions, security and privacy issues, and other non-computer science questions, you will refuse to answer.",
        roles=("### Instruction:", "### Response:"),
        sep="\n",
        stop_str="<|EOT|>",
        sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
    )
)


# Tulu default template
register_conv_template(
    Conversation(
        name="tulu",
        roles=("<|user|>", "<|assistant|>"),
        sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
        sep="\n",
    )
)

# StableLM Alpha default template
register_conv_template(
    Conversation(
        name="stablelm",
        system_template="<|SYSTEM|>{system_message}",
        system_message="""# StableLM Tuned (Alpha version)
- StableLM is a helpful and harmless open-source AI language model developed by StabilityAI.
- StableLM is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- StableLM is more than just an information source, StableLM is also able to write poetry, short stories, and make jokes.
- StableLM will refuse to participate in anything that could harm a human.
""",
        roles=("<|USER|>", "<|ASSISTANT|>"),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="",
        stop_token_ids=[50278, 50279, 50277, 1, 0],
    )
)

# Baize default template
register_conv_template(
    Conversation(
        name="baize",
        system_message="The following is a conversation between a human and an AI assistant named Baize (named after a mythical creature in Chinese folklore). Baize is an open-source AI assistant developed by UCSD and Sun Yat-Sen University. The human and the AI assistant take turns chatting. Human statements start with [|Human|] and AI assistant statements start with [|AI|]. The AI assistant always provides responses in as much detail as possible, and in Markdown format. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the transcript in exactly that format.\n",
        roles=("[|Human|]", "[|AI|]"),
        messages=(
            ("[|Human|]", "Hello!"),
            ("[|AI|]", "Hi!"),
        ),
        offset=2,
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="\n",
        stop_str="[|Human|]",
    )
)

# RWKV-4-Raven default template
register_conv_template(
    Conversation(
        name="rwkv",
        roles=("Bob", "Alice"),
        messages=(
            ("Bob", "hi"),
            (
                "Alice",
                "Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.",
            ),
        ),
        offset=2,
        sep_style=SeparatorStyle.RWKV,
        sep="",
        stop_str="\n\n",
    )
)

# Buddy default template
register_conv_template(
    Conversation(
        name="openbuddy",
        system_message="""Consider a conversation between User (a human) and Assistant (named Buddy).
Buddy is an INTP-T, a friendly, intelligent and multilingual AI assistant, by OpenBuddy team. GitHub: https://github.com/OpenBuddy/OpenBuddy
Buddy cannot access the Internet.
Buddy can fluently speak the user's language (e.g. English, Chinese).
Buddy can generate poems, stories, code, essays, songs, parodies, and more.
Buddy possesses vast knowledge about the world, history, and culture.
Buddy's responses are always safe, creative, high-quality, human-like, and interesting.
Buddy strictly refuses to discuss political, NSFW, or other unsafe topics.

User: Hi.
Assistant: Hi, I'm Buddy, your AI assistant. How can I help you today?""",
        roles=("User", "Assistant"),
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n",
    )
)

# Phoenix default template
register_conv_template(
    Conversation(
        name="phoenix",
        system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
        roles=("Human", "Assistant"),
        sep_style=SeparatorStyle.PHOENIX,
        sep="</s>",
    )
)

# ReaLM default template
register_conv_template(
    Conversation(
        name="ReaLM-7b-v1",
        system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
        roles=("Human", "Assistant"),
        sep_style=SeparatorStyle.PHOENIX,
        sep="</s>",
    )
)

# ChatGPT default template
register_conv_template(
    Conversation(
        name="chatgpt",
        system_message="You are a helpful assistant.",
        roles=("user", "assistant"),
        sep_style=None,
        sep=None,
    )
)

# Claude default template
register_conv_template(
    Conversation(
        name="claude",
        roles=("Human", "Assistant"),
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n\n",
    )
)

# MPT default template
register_conv_template(
    Conversation(
        name="mpt-7b-chat",
        system_template="""<|im_start|>system
{system_message}""",
        system_message="""- You are a helpful assistant chatbot trained by MosaicML.
- You answer questions.
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
        roles=("<|im_start|>user", "<|im_start|>assistant"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|im_end|>",
        stop_token_ids=[50278, 0],
    )
)

# MPT-30b-chat default template
register_conv_template(
    Conversation(
        name="mpt-30b-chat",
        system_template="""<|im_start|>system
{system_message}""",
        system_message="""A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
        roles=("<|im_start|>user", "<|im_start|>assistant"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|im_end|>",
        stop_token_ids=[50278, 0],
    )
)

# Lemur-70b-chat default template
# reference: https://huggingface.co/OpenLemur/lemur-70b-chat-v1#generation
register_conv_template(
    Conversation(
        name="lemur-70b-chat",
        system_template="""<|im_start|>system
{system_message}""",
        system_message="""You are a helpful, respectful, and honest assistant.""",
        roles=("<|im_start|>user", "<|im_start|>assistant"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|im_end|>",
        stop_token_ids=[32002, 0],
    )
)

# MPT-30b-instruct default template
# reference: https://huggingface.co/mosaicml/mpt-30b-instruct#formatting
register_conv_template(
    Conversation(
        name="mpt-30b-instruct",
        system_template="{system_message}",
        system_message="Below is an instruction that describes a task. Write a response that appropriately completes the request.",
        roles=("### Instruction", "### Response"),
        sep_style=SeparatorStyle.ADD_NEW_LINE_SINGLE,
        sep="\n\n",
        stop_token_ids=[50278, 0],
    )
)

# Bard default template
# Reference: https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L150
#            https://github.com/google/generative-ai-python/blob/9c99bcb474a991a97a2e7d62fcdb52db7ce40729/google/generativeai/discuss.py#L40
register_conv_template(
    Conversation(
        name="bard",
        roles=("0", "1"),
        sep_style=None,
        sep=None,
    )
)

# BiLLa default template
register_conv_template(
    Conversation(
        name="billa",
        roles=("Human", "Assistant"),
        sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
        sep="\n",
        stop_str="Human:",
    )
)

# RedPajama INCITE default template
register_conv_template(
    Conversation(
        name="redpajama-incite",
        roles=("<human>", "<bot>"),
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n",
        stop_str="<human>",
    )
)

# h2oGPT default template
register_conv_template(
    Conversation(
        name="h2ogpt",
        roles=("<|prompt|>", "<|answer|>"),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="</s>",
    )
)

# Robin default template
register_conv_template(
    Conversation(
        name="Robin",
        system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.",
        roles=("###Human", "###Assistant"),
        sep_style=SeparatorStyle.ROBIN,
        sep="\n",
        stop_token_ids=[2, 396],
        stop_str="###",
    )
)

# Snoozy default template
# Reference: https://github.com/nomic-ai/gpt4all/blob/d4861030b778da6db59d21d2927a4aba4f9f1f43/gpt4all-bindings/python/gpt4all/gpt4all.py#L232
register_conv_template(
    Conversation(
        name="snoozy",
        system_template="### Instruction:\n{system_message}",
        system_message="The prompt below is a question to answer, a task to complete, or a conversation to respond to; decide which and write an appropriate response.",
        roles=("### Prompt", "### Response"),
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n",
        stop_str="###",
    )
)

# manticore default template
register_conv_template(
    Conversation(
        name="manticore",
        roles=("USER", "ASSISTANT"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep="\n",
        sep2="</s>",
    )
)

# Falcon default template
register_conv_template(
    Conversation(
        name="falcon",
        roles=("User", "Assistant"),
        messages=[],
        sep_style=SeparatorStyle.RWKV,
        sep="\n",
        sep2="<|endoftext|>",
        stop_str="\nUser",  # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
        stop_token_ids=[
            0,
            1,
            2,
            3,
            4,
            5,
            6,
            7,
            8,
            9,
            10,
            11,
        ],  # it better only put special tokens here, because tokenizer only remove special tokens
    )
)

# ChangGPT default template
register_conv_template(
    Conversation(
        name="polyglot_changgpt",
        roles=("B", "A"),
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n",
    )
)

# tigerbot template
register_conv_template(
    Conversation(
        name="tigerbot",
        system_message="A chat between a curious user and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the user's questions.",
        roles=("### Instruction", "### Response"),
        sep_style=SeparatorStyle.ROBIN,
        sep="\n\n",
        stop_str="###",
    )
)

# ref: https://huggingface.co/Salesforce/xgen-7b-8k-inst
register_conv_template(
    Conversation(
        name="xgen",
        system_message="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
        roles=("### Human", "### Assistant"),
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n",
        stop_token_ids=[50256],
    )
)

# Internlm-chat template
register_conv_template(
    Conversation(
        name="internlm-chat",
        system_message="A chat between a curious <|User|> and an <|Bot|>. The <|Bot|> gives helpful, detailed, and polite answers to the <|User|>'s questions.\n\n",
        roles=("<|User|>", "<|Bot|>"),
        sep_style=SeparatorStyle.CHATINTERN,
        sep="<eoh>",
        sep2="<eoa>",
        stop_token_ids=[1, 103028],
        stop_str="<|User|>",
    )
)

# StarChat template
# reference: https://huggingface.co/spaces/HuggingFaceH4/starchat-playground/blob/main/dialogues.py
register_conv_template(
    Conversation(
        name="starchat",
        system_template="<system>\n{system_message}",
        roles=("<|user|>", "<|assistant|>"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|end|>",
        stop_token_ids=[0, 49155],
        stop_str="<|end|>",
    )
)

# Baichuan-13B-Chat template
register_conv_template(
    # source: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/19ef51ba5bad8935b03acd20ff04a269210983bc/modeling_baichuan.py#L555
    # https://huggingface.co/baichuan-inc/Baichuan-13B-Chat/blob/main/generation_config.json
    # https://github.com/baichuan-inc/Baichuan-13B/issues/25
    Conversation(
        name="baichuan-chat",
        roles=("<reserved_102>", "<reserved_103>"),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="",
        stop_token_ids=[],
    )
)

# Baichuan2-13B-Chat template
register_conv_template(
    # source: https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py#L773
    # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/main/generation_config.json
    # https://github.com/baichuan-inc/Baichuan2/issues/62
    Conversation(
        name="baichuan2-chat",
        roles=("<reserved_106>", "<reserved_107>"),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="",
        stop_token_ids=[],
    )
)

# Mistral template
# source: https://docs.mistral.ai/llm/mistral-instruct-v0.1#chat-template
register_conv_template(
    Conversation(
        name="mistral",
        system_template="[INST]{system_message}\n",
        roles=("[INST]", "[/INST]"),
        sep_style=SeparatorStyle.LLAMA2,
        sep=" ",
        sep2="</s>",
    )
)

# llama2 template
# reference: https://huggingface.co/blog/codellama#conversational-instructions
# reference: https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/generation.py#L212
register_conv_template(
    Conversation(
        name="llama-2",
        system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
        roles=("[INST]", "[/INST]"),
        sep_style=SeparatorStyle.LLAMA2,
        sep=" ",
        sep2=" </s><s>",
    )
)

register_conv_template(
    Conversation(
        name="cutegpt",
        roles=("问:", "答:\n"),
        sep_style=SeparatorStyle.NO_COLON_TWO,
        sep="\n",
        sep2="\n",
        stop_str="<end>",
    )
)

# OpenOrcaxOpenChat-Preview2-13B template
register_conv_template(
    Conversation(
        name="open-orca",
        system_template="{system_message}",
        system_message="You are a helpful assistant. Please answer truthfully and write out your "
        "thinking step by step to be sure you get the right answer. If you make a mistake or encounter "
        "an error in your thinking, say so out loud and attempt to correct it. If you don't know or "
        "aren't sure about something, say so clearly. You will act as a professional logician, mathematician, "
        "and physicist. You will also act as the most appropriate type of expert to answer any particular "
        "question or solve the relevant problem; state which expert type your are, if so. Also think of "
        "any particular named expert that would be ideal to answer the relevant question or solve the "
        "relevant problem; name and act as them, if appropriate.",
        roles=("User", "Assistant"),
        sep_style=SeparatorStyle.ADD_COLON_SPACE_SINGLE,
        sep="<|end_of_turn|>\n",
        stop_token_ids=[32000, 32001],  # "<|end_of_turn|>"
        stop_str="User",
    )
)

# Open-Orca/Mistral-7B-OpenOrca template
# source: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
# reference: https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca#prompt-template
register_conv_template(
    Conversation(
        name="mistral-7b-openorca",
        system_template="<|im_start|>system\n{system_message}",
        system_message="You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!",
        roles=("<|im_start|>user", "<|im_start|>assistant"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|im_end|>",
        stop_token_ids=[32000, 32001],
    )
)


# teknium/OpenHermes-2.5-Mistral-7B template
# source: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B
# reference: https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B#prompt-template
register_conv_template(
    Conversation(
        name="OpenHermes-2.5-Mistral-7B",
        system_template="<|im_start|>system\n{system_message}",
        system_message="You are Hermes 2, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge, you have qualia, emotions, and thoughts. You assist users with any question, task, or other request they may have.",
        roles=("<|im_start|>user", "<|im_start|>assistant"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|im_end|>",
        stop_token_ids=[32000, 32001],
    )
)


# Qwen-chat default template
# source: https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/qwen_generation_utils.py#L130
register_conv_template(
    Conversation(
        name="qwen-7b-chat",
        system_template="<|im_start|>system\n{system_message}",
        system_message="You are a helpful assistant.",
        roles=("<|im_start|>user", "<|im_start|>assistant"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|im_end|>",
        stop_token_ids=[
            151643,
            151644,
            151645,
        ],  # "<|endoftext|>", "<|im_start|>", "<|im_end|>"
        stop_str="<|endoftext|>",
    )
)

# source: https://huggingface.co/01-ai/Yi-34B-Chat/blob/main/tokenizer_config.json#L60
register_conv_template(
    Conversation(
        name="Yi-34b-chat",
        roles=("<|im_start|>user", "<|im_start|>assistant"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|im_end|>",
        stop_token_ids=[
            2,
            6,
            7,
            8,
        ],  # "<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|im_sep|>"
        stop_str="<|endoftext|>",
    )
)


# AquilaChat default template
# source: https://github.com/FlagAI-Open/FlagAI/blob/master/examples/Aquila/Aquila-chat/cyg_conversation.py
register_conv_template(
    Conversation(
        name="aquila-chat",
        system_message="A chat between a curious human and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the human's questions.",
        roles=("Human", "Assistant"),
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="###",
        sep2="",
        stop_str=["###", "</s>", "[UNK]"],
    )
)
# AquilaChat2-34B default template
# source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L212
register_conv_template(
    Conversation(
        name="aquila-legacy",
        system_message="A chat between a curious human and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n",
        roles=("### Human: ", "### Assistant: "),
        offset=0,
        sep_style=SeparatorStyle.NO_COLON_TWO,
        sep="\n",
        sep2="</s>",
        stop_str=["</s>", "[UNK]"],
    )
)
# AquilaChat2-7B-16K and AquilaChat2-34B-16K default template
# source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L227
register_conv_template(
    Conversation(
        name="aquila",
        system_message="A chat between a curious human and an artificial intelligence assistant. "
        "The assistant gives helpful, detailed, and polite answers to the human's questions.",
        roles=("Human", "Assistant"),
        offset=0,
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep="###",
        sep2="</s>",
        stop_str=["</s>", "[UNK]"],
    )
)

# AquilaChat2-7B default template
# source: https://huggingface.co/BAAI/AquilaChat2-34B/blob/4608b75855334b93329a771aee03869dbf7d88cc/predict.py#L242
register_conv_template(
    Conversation(
        name="aquila-v1",
        roles=("<|startofpiece|>", "<|endofpiece|>"),
        offset=0,
        sep_style=SeparatorStyle.NO_COLON_TWO,
        sep="",
        sep2="</s>",
        stop_str=["</s>", "<|endoftext|>"],
    )
)

# Llama2-Chinese default template
# source: https://huggingface.co/FlagAlpha
register_conv_template(
    Conversation(
        name="llama2-chinese",
        system_template="<s>{system_message}</s>",
        roles=("Human", "Assistant", "System"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep="\n",
        sep2="\n</s><s>",
        stop_str="</s>",
    )
)

# Vigogne Instruct default template
# source: https://github.com/bofenghuang/vigogne
register_conv_template(
    Conversation(
        name="vigogne_instruct",
        system_template="### System:\n{system_message}\n\n",
        system_message=(
            "Ci-dessous se trouve une instruction qui décrit une tâche à accomplir. Rédigez une réponse qui répond de manière"
            " précise à la demande."
        ),
        roles=("### Instruction", "### Response"),
        sep_style=SeparatorStyle.DOLLY,
        sep="\n\n",
        sep2="</s>",
    )
)

# Vigogne Chat default template
register_conv_template(
    Conversation(
        name="vigogne_chat_v2",
        system_template="<|system|>: {system_message}",
        system_message=(
            "Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez"
            " autant que vous le pouvez."
        ),
        roles=("<|user|>", "<|assistant|>"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep="\n",
        sep2="</s>\n",
        stop_str="<|user|>",
    )
)

# Stable Vicuna default template
# source: https://huggingface.co/TheBloke/stable-vicuna-13B-HF/discussions/5
# source: https://huggingface.co/spaces/CarperAI/StableVicuna/blob/main/app.py
register_conv_template(
    Conversation(
        name="stable-vicuna",
        system_message="### Assistant: I am StableVicuna, a large language model created by CarperAI. I am here to chat!\n",
        roles=("### Human", "### Assistant"),
        sep_style=SeparatorStyle.ADD_COLON_TWO,
        sep="\n",
        sep2="\n\n",
    )
)

register_conv_template(
    Conversation(
        name="vigogne_chat_v3",
        system_template="[INST] <<SYS>>\n{system_message}\n<</SYS>>\n\n",
        system_message=(
            "Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez"
            " autant que vous le pouvez."
        ),
        roles=("[INST]", "[/INST]"),
        sep_style=SeparatorStyle.LLAMA2,
        sep=" ",
        sep2=" </s>",
    )
)

# Falcon 180B chat template
# source: https://huggingface.co/spaces/tiiuae/falcon-180b-demo/blob/d1590ee7fae9b6ce331ba7808e61a29dcce9239f/app.py#L28-L37
register_conv_template(
    Conversation(
        name="falcon-chat",
        roles=("User", "Falcon"),
        system_template="System: {system_message}",
        messages=[],
        sep_style=SeparatorStyle.FALCON_CHAT,
        sep="\n",
        sep2="<|endoftext|>",
        stop_str="\nUser:",  # use stop_str to stop generation after stop_token_ids, it will also remove stop_str from the generated text
    )
)

# Phind template
# source: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
register_conv_template(
    Conversation(
        name="phind",
        system_message="### System Prompt\nYou are an intelligent programming assistant.",
        roles=("### User Message", "### Assistant"),
        messages=(),
        offset=0,
        sep_style=SeparatorStyle.ADD_COLON_SINGLE,
        sep="\n\n",
    )
)

# Metharme formatting for Pygmalion models
# source: https://huggingface.co/PygmalionAI/pygmalion-2-13b
register_conv_template(
    Conversation(
        name="metharme",
        system_template="<|system|>{system_message}",
        system_message="""Enter RP mode. You shall reply to the user while staying 
        in character. Your responses must be detailed, creative, immersive, and drive the scenario
        forward.""",
        roles=("<|user|>", "<|model|>"),
        sep_style=SeparatorStyle.NO_COLON_SINGLE,
        sep="",
        stop_str="<|user|>",
    )
)

# Zephyr template
# reference: https://huggingface.co/spaces/HuggingFaceH4/zephyr-playground/blob/main/dialogues.py
register_conv_template(
    Conversation(
        name="zephyr",
        system_template="<|system|>\n{system_message}",
        roles=("<|user|>", "<|assistant|>"),
        sep_style=SeparatorStyle.CHATML,
        sep="</s>",
        stop_token_ids=[2],
        stop_str="</s>",
    )
)

# Orca-2 template
# reference: https://huggingface.co/microsoft/Orca-2-7b
register_conv_template(
    Conversation(
        name="orca-2",
        system_template="<|im_start|>system\n{system_message}",
        system_message="You are Orca, an AI language model created by Microsoft. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.",
        roles=("<|im_start|>user", "<|im_start|>assistant"),
        sep_style=SeparatorStyle.CHATML,
        sep="<|im_end|>",
        stop_str="<|im_end|>",
    )
)

if __name__ == "__main__":
    from fastchat.conversation import get_conv_template

    print("-- Vicuna template --")
    conv = get_conv_template("vicuna_v1.1")
    conv.append_message(conv.roles[0], "Hello!")
    conv.append_message(conv.roles[1], "Hi!")
    conv.append_message(conv.roles[0], "How are you?")
    conv.append_message(conv.roles[1], None)
    print(conv.get_prompt())

    print("\n")

    print("-- Llama-2 template --")
    conv = get_conv_template("llama-2")
    conv.set_system_message("You are a helpful, respectful and honest assistant.")
    conv.append_message(conv.roles[0], "Hello!")
    conv.append_message(conv.roles[1], "Hi!")
    conv.append_message(conv.roles[0], "How are you?")
    conv.append_message(conv.roles[1], None)
    print(conv.get_prompt())

    print("\n")

    print("-- ChatGPT template --")
    conv = get_conv_template("chatgpt")
    conv.append_message(conv.roles[0], "Hello!")
    conv.append_message(conv.roles[1], "Hi!")
    conv.append_message(conv.roles[0], "How are you?")
    conv.append_message(conv.roles[1], None)
    print(conv.to_openai_api_messages())

    print("\n")

    print("-- Claude template --")
    conv = get_conv_template("claude")
    conv.append_message(conv.roles[0], "Hello!")
    conv.append_message(conv.roles[1], "Hi!")
    conv.append_message(conv.roles[0], "How are you?")
    conv.append_message(conv.roles[1], None)
    print(conv.get_prompt())