import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the fine-tuned model and tokenizer model_name = "EmTpro01/llama-3.2-Code-Generator" # Replace with your Hugging Face model name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the prediction function def generate_code(prompt): # Tokenize the input inputs = tokenizer(prompt, return_tensors="pt") # Generate code outputs = model.generate(inputs["input_ids"], max_length=200, num_return_sequences=1) # Decode the output generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_code # Set up Gradio interface with gr.Blocks() as demo: gr.Markdown("## Code Generation with Fine-Tuned Llama Model") with gr.Row(): prompt = gr.Textbox(label="Input Prompt", placeholder="Enter a prompt for code generation...") output = gr.Textbox(label="Generated Code") generate_button = gr.Button("Generate Code") generate_button.click(generate_code, inputs=prompt, outputs=output) # Launch the interface demo.launch()