Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
import numpy as np | |
from tensorflow.keras.preprocessing import image | |
model = tf.keras.models.load_model('tumor_model.h5') | |
def predict_input_image(img): | |
# Convert NumPy array to PIL.Image | |
img = Image.fromarray(np.uint8(img)) | |
img = img.convert('RGB') | |
img = img.resize((224, 224)) | |
img = np.array(img).reshape(1, 224, 224, 3) # Reshape the image to match the model input | |
# Make predictions | |
prediction = model.predict(img) | |
result = 'No Tumor Detected' if prediction[0][0] > 0.5 else 'Tumor detected' | |
return f"Prediction: {result}" | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=predict_input_image, | |
inputs="image", | |
outputs="text", | |
) | |
# Launch the interface | |
iface.launch() |