Spaces:
Runtime error
Runtime error
Commit
·
f49b1cc
1
Parent(s):
f186d18
Update biomap/plot_functions.py
Browse files- biomap/plot_functions.py +777 -777
biomap/plot_functions.py
CHANGED
@@ -1,778 +1,778 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
|
3 |
-
import hydra
|
4 |
-
import matplotlib as mpl
|
5 |
-
from utils import prep_for_plot
|
6 |
-
|
7 |
-
import torch.multiprocessing
|
8 |
-
import torchvision.transforms as T
|
9 |
-
# import matplotlib.pyplot as plt
|
10 |
-
from model import LitUnsupervisedSegmenter
|
11 |
-
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
12 |
-
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
13 |
-
cmap = mpl.colors.ListedColormap(colors)
|
14 |
-
#from train_segmentation import LitUnsupervisedSegmenter, cmap
|
15 |
-
|
16 |
-
from utils_gee import extract_img, transform_ee_img
|
17 |
-
|
18 |
-
import plotly.graph_objects as go
|
19 |
-
import plotly.express as px
|
20 |
-
import numpy as np
|
21 |
-
from plotly.subplots import make_subplots
|
22 |
-
|
23 |
-
import os
|
24 |
-
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
25 |
-
|
26 |
-
|
27 |
-
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
28 |
-
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
29 |
-
scores_init = [2,3,4,3,1,4,0]
|
30 |
-
|
31 |
-
# Import model configs
|
32 |
-
hydra.initialize(config_path="configs", job_name="corine")
|
33 |
-
cfg = hydra.compose(config_name="my_train_config.yml")
|
34 |
-
|
35 |
-
nbclasses = cfg.dir_dataset_n_classes
|
36 |
-
|
37 |
-
# Load Model
|
38 |
-
model_path = "checkpoint/model/model.pt"
|
39 |
-
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
|
40 |
-
|
41 |
-
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
42 |
-
model.load_state_dict(saved_state_dict)
|
43 |
-
|
44 |
-
from PIL import Image
|
45 |
-
|
46 |
-
import hydra
|
47 |
-
|
48 |
-
from utils import prep_for_plot
|
49 |
-
|
50 |
-
import torch.multiprocessing
|
51 |
-
import torchvision.transforms as T
|
52 |
-
# import matplotlib.pyplot as plt
|
53 |
-
|
54 |
-
from model import LitUnsupervisedSegmenter
|
55 |
-
|
56 |
-
from utils_gee import extract_img, transform_ee_img
|
57 |
-
|
58 |
-
import plotly.graph_objects as go
|
59 |
-
import plotly.express as px
|
60 |
-
import numpy as np
|
61 |
-
from plotly.subplots import make_subplots
|
62 |
-
|
63 |
-
import os
|
64 |
-
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
65 |
-
|
66 |
-
|
67 |
-
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
68 |
-
cmap = mpl.colors.ListedColormap(colors)
|
69 |
-
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
70 |
-
scores_init = [2,3,4,3,1,4,0]
|
71 |
-
|
72 |
-
# Import model configs
|
73 |
-
#hydra.initialize(config_path="configs", job_name="corine")
|
74 |
-
cfg = hydra.compose(config_name="my_train_config.yml")
|
75 |
-
|
76 |
-
nbclasses = cfg.dir_dataset_n_classes
|
77 |
-
|
78 |
-
# Load Model
|
79 |
-
model_path = "checkpoint/model/model.pt"
|
80 |
-
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
|
81 |
-
|
82 |
-
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
83 |
-
model.load_state_dict(saved_state_dict)
|
84 |
-
|
85 |
-
|
86 |
-
#normalize img
|
87 |
-
preprocess = T.Compose([
|
88 |
-
T.ToPILImage(),
|
89 |
-
T.Resize((320,320)),
|
90 |
-
# T.CenterCrop(224),
|
91 |
-
T.ToTensor(),
|
92 |
-
T.Normalize(
|
93 |
-
mean=[0.485, 0.456, 0.406],
|
94 |
-
std=[0.229, 0.224, 0.225]
|
95 |
-
)
|
96 |
-
])
|
97 |
-
|
98 |
-
# Function that look for img on EE and segment it
|
99 |
-
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
|
100 |
-
|
101 |
-
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
|
102 |
-
if how == 'month':
|
103 |
-
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
|
104 |
-
elif how == 'year' :
|
105 |
-
if year_end == None :
|
106 |
-
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
107 |
-
else :
|
108 |
-
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
109 |
-
|
110 |
-
|
111 |
-
img_test= transform_ee_img(img, max = 0.25)
|
112 |
-
|
113 |
-
# Preprocess opened img
|
114 |
-
x = preprocess(img_test)
|
115 |
-
x = torch.unsqueeze(x, dim=0).cpu()
|
116 |
-
# model=model.cpu()
|
117 |
-
|
118 |
-
with torch.no_grad():
|
119 |
-
feats, code = model.net(x)
|
120 |
-
linear_preds = model.linear_probe(x, code)
|
121 |
-
linear_preds = linear_preds.argmax(1)
|
122 |
-
outputs = {
|
123 |
-
'img': x[:model.cfg.n_images].detach().cpu(),
|
124 |
-
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
|
125 |
-
}
|
126 |
-
return outputs
|
127 |
-
|
128 |
-
|
129 |
-
# Function that look for all img on EE and extract all segments with the date as first output arg
|
130 |
-
|
131 |
-
def segment_group(location, start_date, end_date, how = 'month') :
|
132 |
-
outputs = []
|
133 |
-
st_month = int(start_date[5:7])
|
134 |
-
end_month = int(end_date[5:7])
|
135 |
-
|
136 |
-
st_year = int(start_date[0:4])
|
137 |
-
end_year = int(end_date[0:4])
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
for year in range(st_year, end_year+1) :
|
142 |
-
|
143 |
-
if year != end_year :
|
144 |
-
last = 12
|
145 |
-
else :
|
146 |
-
last = end_month
|
147 |
-
|
148 |
-
if year != st_year:
|
149 |
-
start = 1
|
150 |
-
else :
|
151 |
-
start = st_month
|
152 |
-
|
153 |
-
if how == 'month' :
|
154 |
-
for month in range(start, last + 1):
|
155 |
-
month_str = f"{month:0>2d}"
|
156 |
-
year_str = str(year)
|
157 |
-
|
158 |
-
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
|
159 |
-
|
160 |
-
elif how == 'year' :
|
161 |
-
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
|
162 |
-
|
163 |
-
elif how == '2months' :
|
164 |
-
for month in range(start, last + 1):
|
165 |
-
month_str = f"{month:0>2d}"
|
166 |
-
year_str = str(year)
|
167 |
-
month_end = (month) % 12 +1
|
168 |
-
if month_end < month :
|
169 |
-
year_end = year +1
|
170 |
-
else :
|
171 |
-
year_end = year
|
172 |
-
month_end= f"{month_end:0>2d}"
|
173 |
-
year_end = str(year_end)
|
174 |
-
|
175 |
-
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
|
176 |
-
|
177 |
-
|
178 |
-
return outputs
|
179 |
-
|
180 |
-
|
181 |
-
# Function that transforms an output to PIL images
|
182 |
-
|
183 |
-
def transform_to_pil(outputs,alpha=0.3):
|
184 |
-
# Transform img with torch
|
185 |
-
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
|
186 |
-
img=T.ToPILImage()(img)
|
187 |
-
|
188 |
-
# Transform label by saving it then open it
|
189 |
-
# label = outputs['linear_preds'][0]
|
190 |
-
# plt.imsave('label.png',label,cmap=cmap)
|
191 |
-
# label = Image.open('label.png')
|
192 |
-
|
193 |
-
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
194 |
-
labels = np.array(outputs['linear_preds'][0])-1
|
195 |
-
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
196 |
-
|
197 |
-
|
198 |
-
# Overlay labels with img wit alpha
|
199 |
-
background = img.convert("RGBA")
|
200 |
-
overlay = label.convert("RGBA")
|
201 |
-
|
202 |
-
labeled_img = Image.blend(background, overlay, alpha)
|
203 |
-
|
204 |
-
return img, label, labeled_img
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
|
209 |
-
|
210 |
-
def values_from_output(output):
|
211 |
-
imgs = transform_to_pil(output,alpha = 0.3)
|
212 |
-
|
213 |
-
img = imgs[0]
|
214 |
-
img = np.array(img.convert('RGB'))
|
215 |
-
|
216 |
-
labeled_img = imgs[2]
|
217 |
-
labeled_img = np.array(labeled_img.convert('RGB'))
|
218 |
-
|
219 |
-
nb_values = []
|
220 |
-
for i in range(7):
|
221 |
-
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
|
222 |
-
|
223 |
-
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
|
224 |
-
|
225 |
-
return img, labeled_img, nb_values, score
|
226 |
-
|
227 |
-
|
228 |
-
# Function that extract from outputs (from segment_group function) all dates/ all images
|
229 |
-
def values_from_outputs(outputs) :
|
230 |
-
months = []
|
231 |
-
imgs = []
|
232 |
-
imgs_label = []
|
233 |
-
nb_values = []
|
234 |
-
scores = []
|
235 |
-
|
236 |
-
for output in outputs:
|
237 |
-
img, labeled_img, nb_value, score = values_from_output(output[1])
|
238 |
-
months.append(output[0])
|
239 |
-
imgs.append(img)
|
240 |
-
imgs_label.append(labeled_img)
|
241 |
-
nb_values.append(nb_value)
|
242 |
-
scores.append(score)
|
243 |
-
|
244 |
-
return months, imgs, imgs_label, nb_values, scores
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
249 |
-
|
250 |
-
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
251 |
-
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
252 |
-
|
253 |
-
# Scores
|
254 |
-
scatters = []
|
255 |
-
temp = []
|
256 |
-
for score in scores :
|
257 |
-
temp_score = []
|
258 |
-
temp_date = []
|
259 |
-
score = scores[i]
|
260 |
-
temp.append(score)
|
261 |
-
text_temp = ["" for i in temp]
|
262 |
-
text_temp[-1] = str(round(score,2))
|
263 |
-
scatters.append(go.Scatter(x=text_temp, y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
|
264 |
-
|
265 |
-
|
266 |
-
# Scores
|
267 |
-
fig = make_subplots(
|
268 |
-
rows=1, cols=4,
|
269 |
-
# specs=[[{"rowspan": 2}, {"rowspan": 2}, {"type": "pie"}, None]]
|
270 |
-
# row_heights=[0.8, 0.2],
|
271 |
-
column_widths = [0.6, 0.6,0.3, 0.3],
|
272 |
-
subplot_titles=("Localisation visualization", "labeled visualisation", "Segments repartition", "Biodiversity scores")
|
273 |
-
)
|
274 |
-
|
275 |
-
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
276 |
-
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
277 |
-
|
278 |
-
fig.add_trace(go.Pie(labels = class_names,
|
279 |
-
values = nb_values[0],
|
280 |
-
marker_colors = colors,
|
281 |
-
name="Segment repartition",
|
282 |
-
textposition='inside',
|
283 |
-
texttemplate = "%{percent:.0%}",
|
284 |
-
textfont_size=14
|
285 |
-
),
|
286 |
-
row=1, col=3)
|
287 |
-
|
288 |
-
|
289 |
-
fig.add_trace(scatters[0], row=1, col=4)
|
290 |
-
# fig.add_annotation(text='score:' + str(scores[0]),
|
291 |
-
# showarrow=False,
|
292 |
-
# row=2, col=2)
|
293 |
-
|
294 |
-
|
295 |
-
number_frames = len(imgs)
|
296 |
-
frames = [dict(
|
297 |
-
name = k,
|
298 |
-
data = [ fig2["frames"][k]["data"][0],
|
299 |
-
fig3["frames"][k]["data"][0],
|
300 |
-
go.Pie(labels = class_names,
|
301 |
-
values = nb_values[k],
|
302 |
-
marker_colors = colors,
|
303 |
-
name="Segment repartition",
|
304 |
-
textposition='inside',
|
305 |
-
texttemplate = "%{percent:.0%}",
|
306 |
-
textfont_size=14
|
307 |
-
),
|
308 |
-
scatters[k]
|
309 |
-
],
|
310 |
-
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
|
311 |
-
# that are updated by the above three go.Scatter instances
|
312 |
-
) for k in range(number_frames)]
|
313 |
-
|
314 |
-
updatemenus = [dict(type='buttons',
|
315 |
-
buttons=[dict(label='Play',
|
316 |
-
method='animate',
|
317 |
-
args=[[f'{k}' for k in range(number_frames)],
|
318 |
-
dict(frame=dict(duration=500, redraw=False),
|
319 |
-
transition=dict(duration=0),
|
320 |
-
easing='linear',
|
321 |
-
fromcurrent=True,
|
322 |
-
mode='immediate'
|
323 |
-
)])],
|
324 |
-
direction= 'left',
|
325 |
-
pad=dict(r= 10, t=85),
|
326 |
-
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
327 |
-
]
|
328 |
-
|
329 |
-
sliders = [{'yanchor': 'top',
|
330 |
-
'xanchor': 'left',
|
331 |
-
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
332 |
-
'transition': {'duration': 500.0, 'easing': 'linear'},
|
333 |
-
'pad': {'b': 10, 't': 50},
|
334 |
-
'len': 0.9, 'x': 0.1, 'y': 0,
|
335 |
-
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
336 |
-
'transition': {'duration': 0, 'easing': 'linear'}}],
|
337 |
-
'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
338 |
-
]}]
|
339 |
-
|
340 |
-
|
341 |
-
fig.update(frames=frames)
|
342 |
-
|
343 |
-
for i,fr in enumerate(fig["frames"]):
|
344 |
-
fr.update(
|
345 |
-
layout={
|
346 |
-
"xaxis": {
|
347 |
-
"range": [0,imgs[0].shape[1]+i/100000]
|
348 |
-
},
|
349 |
-
"yaxis": {
|
350 |
-
"range": [imgs[0].shape[0]+i/100000,0]
|
351 |
-
},
|
352 |
-
})
|
353 |
-
|
354 |
-
fr.update(layout_title_text= months[i])
|
355 |
-
|
356 |
-
|
357 |
-
fig.update(layout_title_text= 'tot')
|
358 |
-
fig.update(
|
359 |
-
layout={
|
360 |
-
"xaxis": {
|
361 |
-
"range": [0,imgs[0].shape[1]+i/100000],
|
362 |
-
'showgrid': False, # thin lines in the background
|
363 |
-
'zeroline': False, # thick line at x=0
|
364 |
-
'visible': False, # numbers below
|
365 |
-
},
|
366 |
-
|
367 |
-
"yaxis": {
|
368 |
-
"range": [imgs[0].shape[0]+i/100000,0],
|
369 |
-
'showgrid': False, # thin lines in the background
|
370 |
-
'zeroline': False, # thick line at y=0
|
371 |
-
'visible': False,},
|
372 |
-
|
373 |
-
"xaxis3": {
|
374 |
-
"range": [0,len(scores)+1],
|
375 |
-
'autorange': False, # thin lines in the background
|
376 |
-
'showgrid': False, # thin lines in the background
|
377 |
-
'zeroline': False, # thick line at y=0
|
378 |
-
'visible': False
|
379 |
-
},
|
380 |
-
|
381 |
-
"yaxis3": {
|
382 |
-
"range": [0,1.5],
|
383 |
-
'autorange': False,
|
384 |
-
'showgrid': False, # thin lines in the background
|
385 |
-
'zeroline': False, # thick line at y=0
|
386 |
-
'visible': False # thin lines in the background
|
387 |
-
}
|
388 |
-
},
|
389 |
-
legend=dict(
|
390 |
-
yanchor="bottom",
|
391 |
-
y=0.99,
|
392 |
-
xanchor="center",
|
393 |
-
x=0.01
|
394 |
-
)
|
395 |
-
)
|
396 |
-
|
397 |
-
|
398 |
-
fig.update_layout(updatemenus=updatemenus,
|
399 |
-
sliders=sliders)
|
400 |
-
|
401 |
-
fig.update_layout(margin=dict(b=0, r=0))
|
402 |
-
|
403 |
-
# fig.show() #in jupyter notebook
|
404 |
-
|
405 |
-
return fig
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
# Last function (global one)
|
410 |
-
# how = 'month' or '2months' or 'year'
|
411 |
-
|
412 |
-
def segment_region(location, start_date, end_date, how = 'month'):
|
413 |
-
|
414 |
-
#extract the outputs for each image
|
415 |
-
outputs = segment_group(location, start_date, end_date, how = how)
|
416 |
-
|
417 |
-
#extract the intersting values from image
|
418 |
-
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
|
419 |
-
|
420 |
-
#Create the figure
|
421 |
-
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
422 |
-
|
423 |
-
return fig
|
424 |
-
#normalize img
|
425 |
-
preprocess = T.Compose([
|
426 |
-
T.ToPILImage(),
|
427 |
-
T.Resize((320,320)),
|
428 |
-
# T.CenterCrop(224),
|
429 |
-
T.ToTensor(),
|
430 |
-
T.Normalize(
|
431 |
-
mean=[0.485, 0.456, 0.406],
|
432 |
-
std=[0.229, 0.224, 0.225]
|
433 |
-
)
|
434 |
-
])
|
435 |
-
|
436 |
-
# Function that look for img on EE and segment it
|
437 |
-
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
|
438 |
-
|
439 |
-
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
|
440 |
-
if how == 'month':
|
441 |
-
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
|
442 |
-
elif how == 'year' :
|
443 |
-
if year_end == None :
|
444 |
-
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
445 |
-
else :
|
446 |
-
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
447 |
-
|
448 |
-
|
449 |
-
img_test= transform_ee_img(img, max = 0.25)
|
450 |
-
|
451 |
-
# Preprocess opened img
|
452 |
-
x = preprocess(img_test)
|
453 |
-
x = torch.unsqueeze(x, dim=0).cpu()
|
454 |
-
# model=model.cpu()
|
455 |
-
|
456 |
-
with torch.no_grad():
|
457 |
-
feats, code = model.net(x)
|
458 |
-
linear_preds = model.linear_probe(x, code)
|
459 |
-
linear_preds = linear_preds.argmax(1)
|
460 |
-
outputs = {
|
461 |
-
'img': x[:model.cfg.n_images].detach().cpu(),
|
462 |
-
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
|
463 |
-
}
|
464 |
-
return outputs
|
465 |
-
|
466 |
-
|
467 |
-
# Function that look for all img on EE and extract all segments with the date as first output arg
|
468 |
-
|
469 |
-
def segment_group(location, start_date, end_date, how = 'month') :
|
470 |
-
outputs = []
|
471 |
-
st_month = int(start_date[5:7])
|
472 |
-
end_month = int(end_date[5:7])
|
473 |
-
|
474 |
-
st_year = int(start_date[0:4])
|
475 |
-
end_year = int(end_date[0:4])
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
for year in range(st_year, end_year+1) :
|
480 |
-
|
481 |
-
if year != end_year :
|
482 |
-
last = 12
|
483 |
-
else :
|
484 |
-
last = end_month
|
485 |
-
|
486 |
-
if year != st_year:
|
487 |
-
start = 1
|
488 |
-
else :
|
489 |
-
start = st_month
|
490 |
-
|
491 |
-
if how == 'month' :
|
492 |
-
for month in range(start, last + 1):
|
493 |
-
month_str = f"{month:0>2d}"
|
494 |
-
year_str = str(year)
|
495 |
-
|
496 |
-
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
|
497 |
-
|
498 |
-
elif how == 'year' :
|
499 |
-
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
|
500 |
-
|
501 |
-
elif how == '2months' :
|
502 |
-
for month in range(start, last + 1):
|
503 |
-
month_str = f"{month:0>2d}"
|
504 |
-
year_str = str(year)
|
505 |
-
month_end = (month) % 12 +1
|
506 |
-
if month_end < month :
|
507 |
-
year_end = year +1
|
508 |
-
else :
|
509 |
-
year_end = year
|
510 |
-
month_end= f"{month_end:0>2d}"
|
511 |
-
year_end = str(year_end)
|
512 |
-
|
513 |
-
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
|
514 |
-
|
515 |
-
|
516 |
-
return outputs
|
517 |
-
|
518 |
-
|
519 |
-
# Function that transforms an output to PIL images
|
520 |
-
|
521 |
-
def transform_to_pil(outputs,alpha=0.3):
|
522 |
-
# Transform img with torch
|
523 |
-
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
|
524 |
-
img=T.ToPILImage()(img)
|
525 |
-
|
526 |
-
# Transform label by saving it then open it
|
527 |
-
# label = outputs['linear_preds'][0]
|
528 |
-
# plt.imsave('label.png',label,cmap=cmap)
|
529 |
-
# label = Image.open('label.png')
|
530 |
-
|
531 |
-
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
532 |
-
labels = np.array(outputs['linear_preds'][0])-1
|
533 |
-
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
534 |
-
|
535 |
-
|
536 |
-
# Overlay labels with img wit alpha
|
537 |
-
background = img.convert("RGBA")
|
538 |
-
overlay = label.convert("RGBA")
|
539 |
-
|
540 |
-
labeled_img = Image.blend(background, overlay, alpha)
|
541 |
-
|
542 |
-
return img, label, labeled_img
|
543 |
-
|
544 |
-
def values_from_output(output):
|
545 |
-
imgs = transform_to_pil(output,alpha = 0.3)
|
546 |
-
|
547 |
-
img = imgs[0]
|
548 |
-
img = np.array(img.convert('RGB'))
|
549 |
-
|
550 |
-
labeled_img = imgs[2]
|
551 |
-
labeled_img = np.array(labeled_img.convert('RGB'))
|
552 |
-
|
553 |
-
nb_values = []
|
554 |
-
for i in range(7):
|
555 |
-
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
|
556 |
-
|
557 |
-
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
|
558 |
-
|
559 |
-
return img, labeled_img, nb_values, score
|
560 |
-
|
561 |
-
|
562 |
-
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
# Function that extract from outputs (from segment_group function) all dates/ all images
|
567 |
-
def values_from_outputs(outputs) :
|
568 |
-
months = []
|
569 |
-
imgs = []
|
570 |
-
imgs_label = []
|
571 |
-
nb_values = []
|
572 |
-
scores = []
|
573 |
-
|
574 |
-
for output in outputs:
|
575 |
-
img, labeled_img, nb_value, score = values_from_output(output[1])
|
576 |
-
months.append(output[0])
|
577 |
-
imgs.append(img)
|
578 |
-
imgs_label.append(labeled_img)
|
579 |
-
nb_values.append(nb_value)
|
580 |
-
scores.append(score)
|
581 |
-
|
582 |
-
return months, imgs, imgs_label, nb_values, scores
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
587 |
-
|
588 |
-
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
589 |
-
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
590 |
-
|
591 |
-
# Scores
|
592 |
-
scatters = []
|
593 |
-
temp = []
|
594 |
-
for score in scores :
|
595 |
-
temp_score = []
|
596 |
-
temp_date = []
|
597 |
-
#score = scores[i]
|
598 |
-
temp.append(score)
|
599 |
-
n = len(temp)
|
600 |
-
text_temp = ["" for i in temp]
|
601 |
-
text_temp[-1] = str(round(score,2))
|
602 |
-
scatters.append(go.Scatter(x=[0,1], y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
|
603 |
-
print(text_temp)
|
604 |
-
|
605 |
-
# Scores
|
606 |
-
fig = make_subplots(
|
607 |
-
rows=1, cols=4,
|
608 |
-
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "scatter"}]],
|
609 |
-
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
|
610 |
-
)
|
611 |
-
|
612 |
-
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
613 |
-
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
614 |
-
|
615 |
-
fig.add_trace(go.Pie(labels = class_names,
|
616 |
-
values = nb_values[0],
|
617 |
-
marker_colors = colors,
|
618 |
-
name="Segment repartition",
|
619 |
-
textposition='inside',
|
620 |
-
texttemplate = "%{percent:.0%}",
|
621 |
-
textfont_size=14
|
622 |
-
),
|
623 |
-
row=1, col=3)
|
624 |
-
|
625 |
-
|
626 |
-
fig.add_trace(scatters[0], row=1, col=4)
|
627 |
-
fig.update_traces(showlegend=False, selector=dict(type='scatter'))
|
628 |
-
#fig.update_traces(, selector=dict(type='scatter'))
|
629 |
-
# fig.add_annotation(text='score:' + str(scores[0]),
|
630 |
-
# showarrow=False,
|
631 |
-
# row=2, col=2)
|
632 |
-
|
633 |
-
|
634 |
-
number_frames = len(imgs)
|
635 |
-
frames = [dict(
|
636 |
-
name = k,
|
637 |
-
data = [ fig2["frames"][k]["data"][0],
|
638 |
-
fig3["frames"][k]["data"][0],
|
639 |
-
go.Pie(labels = class_names,
|
640 |
-
values = nb_values[k],
|
641 |
-
marker_colors = colors,
|
642 |
-
name="Segment repartition",
|
643 |
-
textposition='inside',
|
644 |
-
texttemplate = "%{percent:.0%}",
|
645 |
-
textfont_size=14
|
646 |
-
),
|
647 |
-
scatters[k]
|
648 |
-
],
|
649 |
-
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
|
650 |
-
# that are updated by the above three go.Scatter instances
|
651 |
-
) for k in range(number_frames)]
|
652 |
-
|
653 |
-
updatemenus = [dict(type='buttons',
|
654 |
-
buttons=[dict(label='Play',
|
655 |
-
method='animate',
|
656 |
-
args=[[f'{k}' for k in range(number_frames)],
|
657 |
-
dict(frame=dict(duration=500, redraw=False),
|
658 |
-
transition=dict(duration=0),
|
659 |
-
easing='linear',
|
660 |
-
fromcurrent=True,
|
661 |
-
mode='immediate'
|
662 |
-
)])],
|
663 |
-
direction= 'left',
|
664 |
-
pad=dict(r= 10, t=85),
|
665 |
-
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
666 |
-
]
|
667 |
-
|
668 |
-
sliders = [{'yanchor': 'top',
|
669 |
-
'xanchor': 'left',
|
670 |
-
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
671 |
-
'transition': {'duration': 500.0, 'easing': 'linear'},
|
672 |
-
'pad': {'b': 10, 't': 50},
|
673 |
-
'len': 0.9, 'x': 0.1, 'y': 0,
|
674 |
-
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
675 |
-
'transition': {'duration': 0, 'easing': 'linear'}}],
|
676 |
-
'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
677 |
-
]}]
|
678 |
-
|
679 |
-
|
680 |
-
fig.update(frames=frames)
|
681 |
-
|
682 |
-
for i,fr in enumerate(fig["frames"]):
|
683 |
-
fr.update(
|
684 |
-
layout={
|
685 |
-
"xaxis": {
|
686 |
-
"range": [0,imgs[0].shape[1]+i/100000]
|
687 |
-
},
|
688 |
-
"yaxis": {
|
689 |
-
"range": [imgs[0].shape[0]+i/100000,0]
|
690 |
-
},
|
691 |
-
})
|
692 |
-
|
693 |
-
fr.update(layout_title_text= months[i])
|
694 |
-
|
695 |
-
|
696 |
-
fig.update(layout_title_text= months[0])
|
697 |
-
fig.update(
|
698 |
-
layout={
|
699 |
-
"xaxis": {
|
700 |
-
"range": [0,imgs[0].shape[1]+i/100000],
|
701 |
-
'showgrid': False, # thin lines in the background
|
702 |
-
'zeroline': False, # thick line at x=0
|
703 |
-
'visible': False, # numbers below
|
704 |
-
},
|
705 |
-
|
706 |
-
"yaxis": {
|
707 |
-
"range": [imgs[0].shape[0]+i/100000,0],
|
708 |
-
'showgrid': False, # thin lines in the background
|
709 |
-
'zeroline': False, # thick line at y=0
|
710 |
-
'visible': False,},
|
711 |
-
|
712 |
-
"xaxis2": {
|
713 |
-
"range": [0,imgs[0].shape[1]+i/100000],
|
714 |
-
'showgrid': False, # thin lines in the background
|
715 |
-
'zeroline': False, # thick line at x=0
|
716 |
-
'visible': False, # numbers below
|
717 |
-
},
|
718 |
-
|
719 |
-
"yaxis2": {
|
720 |
-
"range": [imgs[0].shape[0]+i/100000,0],
|
721 |
-
'showgrid': False, # thin lines in the background
|
722 |
-
'zeroline': False, # thick line at y=0
|
723 |
-
'visible': False,},
|
724 |
-
|
725 |
-
|
726 |
-
"xaxis3": {
|
727 |
-
"range": [0,len(scores)+1],
|
728 |
-
'autorange': False, # thin lines in the background
|
729 |
-
'showgrid': False, # thin lines in the background
|
730 |
-
'zeroline': False, # thick line at y=0
|
731 |
-
'visible': False
|
732 |
-
},
|
733 |
-
|
734 |
-
"yaxis3": {
|
735 |
-
"range": [0,1.5],
|
736 |
-
'autorange': False,
|
737 |
-
'showgrid': False, # thin lines in the background
|
738 |
-
'zeroline': False, # thick line at y=0
|
739 |
-
'visible': False # thin lines in the background
|
740 |
-
}
|
741 |
-
}
|
742 |
-
)
|
743 |
-
|
744 |
-
|
745 |
-
fig.update_layout(updatemenus=updatemenus,
|
746 |
-
sliders=sliders,
|
747 |
-
legend=dict(
|
748 |
-
yanchor= 'top',
|
749 |
-
xanchor= 'left',
|
750 |
-
orientation="h")
|
751 |
-
)
|
752 |
-
|
753 |
-
|
754 |
-
fig.update_layout(margin=dict(b=0, r=0))
|
755 |
-
|
756 |
-
# fig.show() #in jupyter notebook
|
757 |
-
|
758 |
-
return fig
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
# Last function (global one)
|
763 |
-
# how = 'month' or '2months' or 'year'
|
764 |
-
|
765 |
-
def segment_region(latitude, longitude, start_date, end_date, how = 'month'):
|
766 |
-
location = [float(latitude),float(longitude)]
|
767 |
-
how = how[0]
|
768 |
-
#extract the outputs for each image
|
769 |
-
outputs = segment_group(location, start_date, end_date, how = how)
|
770 |
-
|
771 |
-
#extract the intersting values from image
|
772 |
-
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
|
773 |
-
|
774 |
-
|
775 |
-
#Create the figure
|
776 |
-
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
777 |
-
|
778 |
return fig
|
|
|
1 |
+
from PIL import Image
|
2 |
+
|
3 |
+
import hydra
|
4 |
+
import matplotlib as mpl
|
5 |
+
from utils import prep_for_plot
|
6 |
+
|
7 |
+
import torch.multiprocessing
|
8 |
+
import torchvision.transforms as T
|
9 |
+
# import matplotlib.pyplot as plt
|
10 |
+
from model import LitUnsupervisedSegmenter
|
11 |
+
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
12 |
+
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
13 |
+
cmap = mpl.colors.ListedColormap(colors)
|
14 |
+
#from train_segmentation import LitUnsupervisedSegmenter, cmap
|
15 |
+
|
16 |
+
from utils_gee import extract_img, transform_ee_img
|
17 |
+
|
18 |
+
import plotly.graph_objects as go
|
19 |
+
import plotly.express as px
|
20 |
+
import numpy as np
|
21 |
+
from plotly.subplots import make_subplots
|
22 |
+
|
23 |
+
import os
|
24 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
25 |
+
|
26 |
+
|
27 |
+
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
28 |
+
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
29 |
+
scores_init = [2,3,4,3,1,4,0]
|
30 |
+
|
31 |
+
# Import model configs
|
32 |
+
hydra.initialize(config_path="configs", job_name="corine")
|
33 |
+
cfg = hydra.compose(config_name="my_train_config.yml")
|
34 |
+
|
35 |
+
nbclasses = cfg.dir_dataset_n_classes
|
36 |
+
|
37 |
+
# Load Model
|
38 |
+
model_path = "biomap/checkpoint/model/model.pt"
|
39 |
+
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
|
40 |
+
|
41 |
+
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
42 |
+
model.load_state_dict(saved_state_dict)
|
43 |
+
|
44 |
+
from PIL import Image
|
45 |
+
|
46 |
+
import hydra
|
47 |
+
|
48 |
+
from utils import prep_for_plot
|
49 |
+
|
50 |
+
import torch.multiprocessing
|
51 |
+
import torchvision.transforms as T
|
52 |
+
# import matplotlib.pyplot as plt
|
53 |
+
|
54 |
+
from model import LitUnsupervisedSegmenter
|
55 |
+
|
56 |
+
from utils_gee import extract_img, transform_ee_img
|
57 |
+
|
58 |
+
import plotly.graph_objects as go
|
59 |
+
import plotly.express as px
|
60 |
+
import numpy as np
|
61 |
+
from plotly.subplots import make_subplots
|
62 |
+
|
63 |
+
import os
|
64 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
65 |
+
|
66 |
+
|
67 |
+
colors = ('red', 'palegreen', 'green', 'steelblue', 'blue', 'yellow', 'lightgrey')
|
68 |
+
cmap = mpl.colors.ListedColormap(colors)
|
69 |
+
class_names = ('Buildings', 'Cultivation', 'Natural green', 'Wetland', 'Water', 'Infrastructure', 'Background')
|
70 |
+
scores_init = [2,3,4,3,1,4,0]
|
71 |
+
|
72 |
+
# Import model configs
|
73 |
+
#hydra.initialize(config_path="configs", job_name="corine")
|
74 |
+
cfg = hydra.compose(config_name="my_train_config.yml")
|
75 |
+
|
76 |
+
nbclasses = cfg.dir_dataset_n_classes
|
77 |
+
|
78 |
+
# Load Model
|
79 |
+
model_path = "biomap/checkpoint/model/model.pt"
|
80 |
+
saved_state_dict = torch.load(model_path,map_location=torch.device('cpu'))
|
81 |
+
|
82 |
+
model = LitUnsupervisedSegmenter(nbclasses, cfg)
|
83 |
+
model.load_state_dict(saved_state_dict)
|
84 |
+
|
85 |
+
|
86 |
+
#normalize img
|
87 |
+
preprocess = T.Compose([
|
88 |
+
T.ToPILImage(),
|
89 |
+
T.Resize((320,320)),
|
90 |
+
# T.CenterCrop(224),
|
91 |
+
T.ToTensor(),
|
92 |
+
T.Normalize(
|
93 |
+
mean=[0.485, 0.456, 0.406],
|
94 |
+
std=[0.229, 0.224, 0.225]
|
95 |
+
)
|
96 |
+
])
|
97 |
+
|
98 |
+
# Function that look for img on EE and segment it
|
99 |
+
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
|
100 |
+
|
101 |
+
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
|
102 |
+
if how == 'month':
|
103 |
+
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
|
104 |
+
elif how == 'year' :
|
105 |
+
if year_end == None :
|
106 |
+
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
107 |
+
else :
|
108 |
+
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
109 |
+
|
110 |
+
|
111 |
+
img_test= transform_ee_img(img, max = 0.25)
|
112 |
+
|
113 |
+
# Preprocess opened img
|
114 |
+
x = preprocess(img_test)
|
115 |
+
x = torch.unsqueeze(x, dim=0).cpu()
|
116 |
+
# model=model.cpu()
|
117 |
+
|
118 |
+
with torch.no_grad():
|
119 |
+
feats, code = model.net(x)
|
120 |
+
linear_preds = model.linear_probe(x, code)
|
121 |
+
linear_preds = linear_preds.argmax(1)
|
122 |
+
outputs = {
|
123 |
+
'img': x[:model.cfg.n_images].detach().cpu(),
|
124 |
+
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
|
125 |
+
}
|
126 |
+
return outputs
|
127 |
+
|
128 |
+
|
129 |
+
# Function that look for all img on EE and extract all segments with the date as first output arg
|
130 |
+
|
131 |
+
def segment_group(location, start_date, end_date, how = 'month') :
|
132 |
+
outputs = []
|
133 |
+
st_month = int(start_date[5:7])
|
134 |
+
end_month = int(end_date[5:7])
|
135 |
+
|
136 |
+
st_year = int(start_date[0:4])
|
137 |
+
end_year = int(end_date[0:4])
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
for year in range(st_year, end_year+1) :
|
142 |
+
|
143 |
+
if year != end_year :
|
144 |
+
last = 12
|
145 |
+
else :
|
146 |
+
last = end_month
|
147 |
+
|
148 |
+
if year != st_year:
|
149 |
+
start = 1
|
150 |
+
else :
|
151 |
+
start = st_month
|
152 |
+
|
153 |
+
if how == 'month' :
|
154 |
+
for month in range(start, last + 1):
|
155 |
+
month_str = f"{month:0>2d}"
|
156 |
+
year_str = str(year)
|
157 |
+
|
158 |
+
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
|
159 |
+
|
160 |
+
elif how == 'year' :
|
161 |
+
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
|
162 |
+
|
163 |
+
elif how == '2months' :
|
164 |
+
for month in range(start, last + 1):
|
165 |
+
month_str = f"{month:0>2d}"
|
166 |
+
year_str = str(year)
|
167 |
+
month_end = (month) % 12 +1
|
168 |
+
if month_end < month :
|
169 |
+
year_end = year +1
|
170 |
+
else :
|
171 |
+
year_end = year
|
172 |
+
month_end= f"{month_end:0>2d}"
|
173 |
+
year_end = str(year_end)
|
174 |
+
|
175 |
+
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
|
176 |
+
|
177 |
+
|
178 |
+
return outputs
|
179 |
+
|
180 |
+
|
181 |
+
# Function that transforms an output to PIL images
|
182 |
+
|
183 |
+
def transform_to_pil(outputs,alpha=0.3):
|
184 |
+
# Transform img with torch
|
185 |
+
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
|
186 |
+
img=T.ToPILImage()(img)
|
187 |
+
|
188 |
+
# Transform label by saving it then open it
|
189 |
+
# label = outputs['linear_preds'][0]
|
190 |
+
# plt.imsave('label.png',label,cmap=cmap)
|
191 |
+
# label = Image.open('label.png')
|
192 |
+
|
193 |
+
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
194 |
+
labels = np.array(outputs['linear_preds'][0])-1
|
195 |
+
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
196 |
+
|
197 |
+
|
198 |
+
# Overlay labels with img wit alpha
|
199 |
+
background = img.convert("RGBA")
|
200 |
+
overlay = label.convert("RGBA")
|
201 |
+
|
202 |
+
labeled_img = Image.blend(background, overlay, alpha)
|
203 |
+
|
204 |
+
return img, label, labeled_img
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
|
209 |
+
|
210 |
+
def values_from_output(output):
|
211 |
+
imgs = transform_to_pil(output,alpha = 0.3)
|
212 |
+
|
213 |
+
img = imgs[0]
|
214 |
+
img = np.array(img.convert('RGB'))
|
215 |
+
|
216 |
+
labeled_img = imgs[2]
|
217 |
+
labeled_img = np.array(labeled_img.convert('RGB'))
|
218 |
+
|
219 |
+
nb_values = []
|
220 |
+
for i in range(7):
|
221 |
+
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
|
222 |
+
|
223 |
+
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
|
224 |
+
|
225 |
+
return img, labeled_img, nb_values, score
|
226 |
+
|
227 |
+
|
228 |
+
# Function that extract from outputs (from segment_group function) all dates/ all images
|
229 |
+
def values_from_outputs(outputs) :
|
230 |
+
months = []
|
231 |
+
imgs = []
|
232 |
+
imgs_label = []
|
233 |
+
nb_values = []
|
234 |
+
scores = []
|
235 |
+
|
236 |
+
for output in outputs:
|
237 |
+
img, labeled_img, nb_value, score = values_from_output(output[1])
|
238 |
+
months.append(output[0])
|
239 |
+
imgs.append(img)
|
240 |
+
imgs_label.append(labeled_img)
|
241 |
+
nb_values.append(nb_value)
|
242 |
+
scores.append(score)
|
243 |
+
|
244 |
+
return months, imgs, imgs_label, nb_values, scores
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
249 |
+
|
250 |
+
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
251 |
+
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
252 |
+
|
253 |
+
# Scores
|
254 |
+
scatters = []
|
255 |
+
temp = []
|
256 |
+
for score in scores :
|
257 |
+
temp_score = []
|
258 |
+
temp_date = []
|
259 |
+
score = scores[i]
|
260 |
+
temp.append(score)
|
261 |
+
text_temp = ["" for i in temp]
|
262 |
+
text_temp[-1] = str(round(score,2))
|
263 |
+
scatters.append(go.Scatter(x=text_temp, y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
|
264 |
+
|
265 |
+
|
266 |
+
# Scores
|
267 |
+
fig = make_subplots(
|
268 |
+
rows=1, cols=4,
|
269 |
+
# specs=[[{"rowspan": 2}, {"rowspan": 2}, {"type": "pie"}, None]]
|
270 |
+
# row_heights=[0.8, 0.2],
|
271 |
+
column_widths = [0.6, 0.6,0.3, 0.3],
|
272 |
+
subplot_titles=("Localisation visualization", "labeled visualisation", "Segments repartition", "Biodiversity scores")
|
273 |
+
)
|
274 |
+
|
275 |
+
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
276 |
+
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
277 |
+
|
278 |
+
fig.add_trace(go.Pie(labels = class_names,
|
279 |
+
values = nb_values[0],
|
280 |
+
marker_colors = colors,
|
281 |
+
name="Segment repartition",
|
282 |
+
textposition='inside',
|
283 |
+
texttemplate = "%{percent:.0%}",
|
284 |
+
textfont_size=14
|
285 |
+
),
|
286 |
+
row=1, col=3)
|
287 |
+
|
288 |
+
|
289 |
+
fig.add_trace(scatters[0], row=1, col=4)
|
290 |
+
# fig.add_annotation(text='score:' + str(scores[0]),
|
291 |
+
# showarrow=False,
|
292 |
+
# row=2, col=2)
|
293 |
+
|
294 |
+
|
295 |
+
number_frames = len(imgs)
|
296 |
+
frames = [dict(
|
297 |
+
name = k,
|
298 |
+
data = [ fig2["frames"][k]["data"][0],
|
299 |
+
fig3["frames"][k]["data"][0],
|
300 |
+
go.Pie(labels = class_names,
|
301 |
+
values = nb_values[k],
|
302 |
+
marker_colors = colors,
|
303 |
+
name="Segment repartition",
|
304 |
+
textposition='inside',
|
305 |
+
texttemplate = "%{percent:.0%}",
|
306 |
+
textfont_size=14
|
307 |
+
),
|
308 |
+
scatters[k]
|
309 |
+
],
|
310 |
+
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
|
311 |
+
# that are updated by the above three go.Scatter instances
|
312 |
+
) for k in range(number_frames)]
|
313 |
+
|
314 |
+
updatemenus = [dict(type='buttons',
|
315 |
+
buttons=[dict(label='Play',
|
316 |
+
method='animate',
|
317 |
+
args=[[f'{k}' for k in range(number_frames)],
|
318 |
+
dict(frame=dict(duration=500, redraw=False),
|
319 |
+
transition=dict(duration=0),
|
320 |
+
easing='linear',
|
321 |
+
fromcurrent=True,
|
322 |
+
mode='immediate'
|
323 |
+
)])],
|
324 |
+
direction= 'left',
|
325 |
+
pad=dict(r= 10, t=85),
|
326 |
+
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
327 |
+
]
|
328 |
+
|
329 |
+
sliders = [{'yanchor': 'top',
|
330 |
+
'xanchor': 'left',
|
331 |
+
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
332 |
+
'transition': {'duration': 500.0, 'easing': 'linear'},
|
333 |
+
'pad': {'b': 10, 't': 50},
|
334 |
+
'len': 0.9, 'x': 0.1, 'y': 0,
|
335 |
+
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
336 |
+
'transition': {'duration': 0, 'easing': 'linear'}}],
|
337 |
+
'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
338 |
+
]}]
|
339 |
+
|
340 |
+
|
341 |
+
fig.update(frames=frames)
|
342 |
+
|
343 |
+
for i,fr in enumerate(fig["frames"]):
|
344 |
+
fr.update(
|
345 |
+
layout={
|
346 |
+
"xaxis": {
|
347 |
+
"range": [0,imgs[0].shape[1]+i/100000]
|
348 |
+
},
|
349 |
+
"yaxis": {
|
350 |
+
"range": [imgs[0].shape[0]+i/100000,0]
|
351 |
+
},
|
352 |
+
})
|
353 |
+
|
354 |
+
fr.update(layout_title_text= months[i])
|
355 |
+
|
356 |
+
|
357 |
+
fig.update(layout_title_text= 'tot')
|
358 |
+
fig.update(
|
359 |
+
layout={
|
360 |
+
"xaxis": {
|
361 |
+
"range": [0,imgs[0].shape[1]+i/100000],
|
362 |
+
'showgrid': False, # thin lines in the background
|
363 |
+
'zeroline': False, # thick line at x=0
|
364 |
+
'visible': False, # numbers below
|
365 |
+
},
|
366 |
+
|
367 |
+
"yaxis": {
|
368 |
+
"range": [imgs[0].shape[0]+i/100000,0],
|
369 |
+
'showgrid': False, # thin lines in the background
|
370 |
+
'zeroline': False, # thick line at y=0
|
371 |
+
'visible': False,},
|
372 |
+
|
373 |
+
"xaxis3": {
|
374 |
+
"range": [0,len(scores)+1],
|
375 |
+
'autorange': False, # thin lines in the background
|
376 |
+
'showgrid': False, # thin lines in the background
|
377 |
+
'zeroline': False, # thick line at y=0
|
378 |
+
'visible': False
|
379 |
+
},
|
380 |
+
|
381 |
+
"yaxis3": {
|
382 |
+
"range": [0,1.5],
|
383 |
+
'autorange': False,
|
384 |
+
'showgrid': False, # thin lines in the background
|
385 |
+
'zeroline': False, # thick line at y=0
|
386 |
+
'visible': False # thin lines in the background
|
387 |
+
}
|
388 |
+
},
|
389 |
+
legend=dict(
|
390 |
+
yanchor="bottom",
|
391 |
+
y=0.99,
|
392 |
+
xanchor="center",
|
393 |
+
x=0.01
|
394 |
+
)
|
395 |
+
)
|
396 |
+
|
397 |
+
|
398 |
+
fig.update_layout(updatemenus=updatemenus,
|
399 |
+
sliders=sliders)
|
400 |
+
|
401 |
+
fig.update_layout(margin=dict(b=0, r=0))
|
402 |
+
|
403 |
+
# fig.show() #in jupyter notebook
|
404 |
+
|
405 |
+
return fig
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
# Last function (global one)
|
410 |
+
# how = 'month' or '2months' or 'year'
|
411 |
+
|
412 |
+
def segment_region(location, start_date, end_date, how = 'month'):
|
413 |
+
|
414 |
+
#extract the outputs for each image
|
415 |
+
outputs = segment_group(location, start_date, end_date, how = how)
|
416 |
+
|
417 |
+
#extract the intersting values from image
|
418 |
+
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
|
419 |
+
|
420 |
+
#Create the figure
|
421 |
+
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
422 |
+
|
423 |
+
return fig
|
424 |
+
#normalize img
|
425 |
+
preprocess = T.Compose([
|
426 |
+
T.ToPILImage(),
|
427 |
+
T.Resize((320,320)),
|
428 |
+
# T.CenterCrop(224),
|
429 |
+
T.ToTensor(),
|
430 |
+
T.Normalize(
|
431 |
+
mean=[0.485, 0.456, 0.406],
|
432 |
+
std=[0.229, 0.224, 0.225]
|
433 |
+
)
|
434 |
+
])
|
435 |
+
|
436 |
+
# Function that look for img on EE and segment it
|
437 |
+
# -- 3 ways possible to avoid cloudy environment -- monthly / bi-monthly / yearly meaned img
|
438 |
+
|
439 |
+
def segment_loc(location, month, year, how = "month", month_end = '12', year_end = None) :
|
440 |
+
if how == 'month':
|
441 |
+
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month +'-28')
|
442 |
+
elif how == 'year' :
|
443 |
+
if year_end == None :
|
444 |
+
img = extract_img(location, year +'-'+ month +'-01', year +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
445 |
+
else :
|
446 |
+
img = extract_img(location, year +'-'+ month +'-01', year_end +'-'+ month_end +'-28', width = 0.04 , len = 0.04)
|
447 |
+
|
448 |
+
|
449 |
+
img_test= transform_ee_img(img, max = 0.25)
|
450 |
+
|
451 |
+
# Preprocess opened img
|
452 |
+
x = preprocess(img_test)
|
453 |
+
x = torch.unsqueeze(x, dim=0).cpu()
|
454 |
+
# model=model.cpu()
|
455 |
+
|
456 |
+
with torch.no_grad():
|
457 |
+
feats, code = model.net(x)
|
458 |
+
linear_preds = model.linear_probe(x, code)
|
459 |
+
linear_preds = linear_preds.argmax(1)
|
460 |
+
outputs = {
|
461 |
+
'img': x[:model.cfg.n_images].detach().cpu(),
|
462 |
+
'linear_preds': linear_preds[:model.cfg.n_images].detach().cpu()
|
463 |
+
}
|
464 |
+
return outputs
|
465 |
+
|
466 |
+
|
467 |
+
# Function that look for all img on EE and extract all segments with the date as first output arg
|
468 |
+
|
469 |
+
def segment_group(location, start_date, end_date, how = 'month') :
|
470 |
+
outputs = []
|
471 |
+
st_month = int(start_date[5:7])
|
472 |
+
end_month = int(end_date[5:7])
|
473 |
+
|
474 |
+
st_year = int(start_date[0:4])
|
475 |
+
end_year = int(end_date[0:4])
|
476 |
+
|
477 |
+
|
478 |
+
|
479 |
+
for year in range(st_year, end_year+1) :
|
480 |
+
|
481 |
+
if year != end_year :
|
482 |
+
last = 12
|
483 |
+
else :
|
484 |
+
last = end_month
|
485 |
+
|
486 |
+
if year != st_year:
|
487 |
+
start = 1
|
488 |
+
else :
|
489 |
+
start = st_month
|
490 |
+
|
491 |
+
if how == 'month' :
|
492 |
+
for month in range(start, last + 1):
|
493 |
+
month_str = f"{month:0>2d}"
|
494 |
+
year_str = str(year)
|
495 |
+
|
496 |
+
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str)))
|
497 |
+
|
498 |
+
elif how == 'year' :
|
499 |
+
outputs.append((str(year) + '-' + f"{start:0>2d}", segment_loc(location, f"{start:0>2d}", str(year), how = 'year', month_end=f"{last:0>2d}")))
|
500 |
+
|
501 |
+
elif how == '2months' :
|
502 |
+
for month in range(start, last + 1):
|
503 |
+
month_str = f"{month:0>2d}"
|
504 |
+
year_str = str(year)
|
505 |
+
month_end = (month) % 12 +1
|
506 |
+
if month_end < month :
|
507 |
+
year_end = year +1
|
508 |
+
else :
|
509 |
+
year_end = year
|
510 |
+
month_end= f"{month_end:0>2d}"
|
511 |
+
year_end = str(year_end)
|
512 |
+
|
513 |
+
outputs.append((year_str + '-' + month_str, segment_loc(location, month_str, year_str,how = 'year', month_end=month_end, year_end=year_end)))
|
514 |
+
|
515 |
+
|
516 |
+
return outputs
|
517 |
+
|
518 |
+
|
519 |
+
# Function that transforms an output to PIL images
|
520 |
+
|
521 |
+
def transform_to_pil(outputs,alpha=0.3):
|
522 |
+
# Transform img with torch
|
523 |
+
img = torch.moveaxis(prep_for_plot(outputs['img'][0]),-1,0)
|
524 |
+
img=T.ToPILImage()(img)
|
525 |
+
|
526 |
+
# Transform label by saving it then open it
|
527 |
+
# label = outputs['linear_preds'][0]
|
528 |
+
# plt.imsave('label.png',label,cmap=cmap)
|
529 |
+
# label = Image.open('label.png')
|
530 |
+
|
531 |
+
cmaplist = np.array([np.array(cmap(i)) for i in range(cmap.N)])
|
532 |
+
labels = np.array(outputs['linear_preds'][0])-1
|
533 |
+
label = T.ToPILImage()((cmaplist[labels]*255).astype(np.uint8))
|
534 |
+
|
535 |
+
|
536 |
+
# Overlay labels with img wit alpha
|
537 |
+
background = img.convert("RGBA")
|
538 |
+
overlay = label.convert("RGBA")
|
539 |
+
|
540 |
+
labeled_img = Image.blend(background, overlay, alpha)
|
541 |
+
|
542 |
+
return img, label, labeled_img
|
543 |
+
|
544 |
+
def values_from_output(output):
|
545 |
+
imgs = transform_to_pil(output,alpha = 0.3)
|
546 |
+
|
547 |
+
img = imgs[0]
|
548 |
+
img = np.array(img.convert('RGB'))
|
549 |
+
|
550 |
+
labeled_img = imgs[2]
|
551 |
+
labeled_img = np.array(labeled_img.convert('RGB'))
|
552 |
+
|
553 |
+
nb_values = []
|
554 |
+
for i in range(7):
|
555 |
+
nb_values.append(np.count_nonzero(output['linear_preds'][0] == i+1))
|
556 |
+
|
557 |
+
score = sum(x * y for x, y in zip(scores_init, nb_values)) / sum(nb_values) / max(scores_init)
|
558 |
+
|
559 |
+
return img, labeled_img, nb_values, score
|
560 |
+
|
561 |
+
|
562 |
+
# Function that extract labeled_img(PIL) and nb_values(number of pixels for each class) and the score for each observation
|
563 |
+
|
564 |
+
|
565 |
+
|
566 |
+
# Function that extract from outputs (from segment_group function) all dates/ all images
|
567 |
+
def values_from_outputs(outputs) :
|
568 |
+
months = []
|
569 |
+
imgs = []
|
570 |
+
imgs_label = []
|
571 |
+
nb_values = []
|
572 |
+
scores = []
|
573 |
+
|
574 |
+
for output in outputs:
|
575 |
+
img, labeled_img, nb_value, score = values_from_output(output[1])
|
576 |
+
months.append(output[0])
|
577 |
+
imgs.append(img)
|
578 |
+
imgs_label.append(labeled_img)
|
579 |
+
nb_values.append(nb_value)
|
580 |
+
scores.append(score)
|
581 |
+
|
582 |
+
return months, imgs, imgs_label, nb_values, scores
|
583 |
+
|
584 |
+
|
585 |
+
|
586 |
+
def plot_imgs_labels(months, imgs, imgs_label, nb_values, scores) :
|
587 |
+
|
588 |
+
fig2 = px.imshow(np.array(imgs), animation_frame=0, binary_string=True)
|
589 |
+
fig3 = px.imshow(np.array(imgs_label), animation_frame=0, binary_string=True)
|
590 |
+
|
591 |
+
# Scores
|
592 |
+
scatters = []
|
593 |
+
temp = []
|
594 |
+
for score in scores :
|
595 |
+
temp_score = []
|
596 |
+
temp_date = []
|
597 |
+
#score = scores[i]
|
598 |
+
temp.append(score)
|
599 |
+
n = len(temp)
|
600 |
+
text_temp = ["" for i in temp]
|
601 |
+
text_temp[-1] = str(round(score,2))
|
602 |
+
scatters.append(go.Scatter(x=[0,1], y=temp, mode="lines+markers+text", marker_color="black", text = text_temp, textposition="top center"))
|
603 |
+
print(text_temp)
|
604 |
+
|
605 |
+
# Scores
|
606 |
+
fig = make_subplots(
|
607 |
+
rows=1, cols=4,
|
608 |
+
specs=[[{"type": "image"},{"type": "image"}, {"type": "pie"}, {"type": "scatter"}]],
|
609 |
+
subplot_titles=("Localisation visualization", "Labeled visualisation", "Segments repartition", "Biodiversity scores")
|
610 |
+
)
|
611 |
+
|
612 |
+
fig.add_trace(fig2["frames"][0]["data"][0], row=1, col=1)
|
613 |
+
fig.add_trace(fig3["frames"][0]["data"][0], row=1, col=2)
|
614 |
+
|
615 |
+
fig.add_trace(go.Pie(labels = class_names,
|
616 |
+
values = nb_values[0],
|
617 |
+
marker_colors = colors,
|
618 |
+
name="Segment repartition",
|
619 |
+
textposition='inside',
|
620 |
+
texttemplate = "%{percent:.0%}",
|
621 |
+
textfont_size=14
|
622 |
+
),
|
623 |
+
row=1, col=3)
|
624 |
+
|
625 |
+
|
626 |
+
fig.add_trace(scatters[0], row=1, col=4)
|
627 |
+
fig.update_traces(showlegend=False, selector=dict(type='scatter'))
|
628 |
+
#fig.update_traces(, selector=dict(type='scatter'))
|
629 |
+
# fig.add_annotation(text='score:' + str(scores[0]),
|
630 |
+
# showarrow=False,
|
631 |
+
# row=2, col=2)
|
632 |
+
|
633 |
+
|
634 |
+
number_frames = len(imgs)
|
635 |
+
frames = [dict(
|
636 |
+
name = k,
|
637 |
+
data = [ fig2["frames"][k]["data"][0],
|
638 |
+
fig3["frames"][k]["data"][0],
|
639 |
+
go.Pie(labels = class_names,
|
640 |
+
values = nb_values[k],
|
641 |
+
marker_colors = colors,
|
642 |
+
name="Segment repartition",
|
643 |
+
textposition='inside',
|
644 |
+
texttemplate = "%{percent:.0%}",
|
645 |
+
textfont_size=14
|
646 |
+
),
|
647 |
+
scatters[k]
|
648 |
+
],
|
649 |
+
traces=[0, 1,2,3] # the elements of the list [0,1,2] give info on the traces in fig.data
|
650 |
+
# that are updated by the above three go.Scatter instances
|
651 |
+
) for k in range(number_frames)]
|
652 |
+
|
653 |
+
updatemenus = [dict(type='buttons',
|
654 |
+
buttons=[dict(label='Play',
|
655 |
+
method='animate',
|
656 |
+
args=[[f'{k}' for k in range(number_frames)],
|
657 |
+
dict(frame=dict(duration=500, redraw=False),
|
658 |
+
transition=dict(duration=0),
|
659 |
+
easing='linear',
|
660 |
+
fromcurrent=True,
|
661 |
+
mode='immediate'
|
662 |
+
)])],
|
663 |
+
direction= 'left',
|
664 |
+
pad=dict(r= 10, t=85),
|
665 |
+
showactive =True, x= 0.1, y= 0.13, xanchor= 'right', yanchor= 'top')
|
666 |
+
]
|
667 |
+
|
668 |
+
sliders = [{'yanchor': 'top',
|
669 |
+
'xanchor': 'left',
|
670 |
+
'currentvalue': {'font': {'size': 16}, 'prefix': 'Frame: ', 'visible': False, 'xanchor': 'right'},
|
671 |
+
'transition': {'duration': 500.0, 'easing': 'linear'},
|
672 |
+
'pad': {'b': 10, 't': 50},
|
673 |
+
'len': 0.9, 'x': 0.1, 'y': 0,
|
674 |
+
'steps': [{'args': [[k], {'frame': {'duration': 500.0, 'easing': 'linear', 'redraw': False},
|
675 |
+
'transition': {'duration': 0, 'easing': 'linear'}}],
|
676 |
+
'label': months[k], 'method': 'animate'} for k in range(number_frames)
|
677 |
+
]}]
|
678 |
+
|
679 |
+
|
680 |
+
fig.update(frames=frames)
|
681 |
+
|
682 |
+
for i,fr in enumerate(fig["frames"]):
|
683 |
+
fr.update(
|
684 |
+
layout={
|
685 |
+
"xaxis": {
|
686 |
+
"range": [0,imgs[0].shape[1]+i/100000]
|
687 |
+
},
|
688 |
+
"yaxis": {
|
689 |
+
"range": [imgs[0].shape[0]+i/100000,0]
|
690 |
+
},
|
691 |
+
})
|
692 |
+
|
693 |
+
fr.update(layout_title_text= months[i])
|
694 |
+
|
695 |
+
|
696 |
+
fig.update(layout_title_text= months[0])
|
697 |
+
fig.update(
|
698 |
+
layout={
|
699 |
+
"xaxis": {
|
700 |
+
"range": [0,imgs[0].shape[1]+i/100000],
|
701 |
+
'showgrid': False, # thin lines in the background
|
702 |
+
'zeroline': False, # thick line at x=0
|
703 |
+
'visible': False, # numbers below
|
704 |
+
},
|
705 |
+
|
706 |
+
"yaxis": {
|
707 |
+
"range": [imgs[0].shape[0]+i/100000,0],
|
708 |
+
'showgrid': False, # thin lines in the background
|
709 |
+
'zeroline': False, # thick line at y=0
|
710 |
+
'visible': False,},
|
711 |
+
|
712 |
+
"xaxis2": {
|
713 |
+
"range": [0,imgs[0].shape[1]+i/100000],
|
714 |
+
'showgrid': False, # thin lines in the background
|
715 |
+
'zeroline': False, # thick line at x=0
|
716 |
+
'visible': False, # numbers below
|
717 |
+
},
|
718 |
+
|
719 |
+
"yaxis2": {
|
720 |
+
"range": [imgs[0].shape[0]+i/100000,0],
|
721 |
+
'showgrid': False, # thin lines in the background
|
722 |
+
'zeroline': False, # thick line at y=0
|
723 |
+
'visible': False,},
|
724 |
+
|
725 |
+
|
726 |
+
"xaxis3": {
|
727 |
+
"range": [0,len(scores)+1],
|
728 |
+
'autorange': False, # thin lines in the background
|
729 |
+
'showgrid': False, # thin lines in the background
|
730 |
+
'zeroline': False, # thick line at y=0
|
731 |
+
'visible': False
|
732 |
+
},
|
733 |
+
|
734 |
+
"yaxis3": {
|
735 |
+
"range": [0,1.5],
|
736 |
+
'autorange': False,
|
737 |
+
'showgrid': False, # thin lines in the background
|
738 |
+
'zeroline': False, # thick line at y=0
|
739 |
+
'visible': False # thin lines in the background
|
740 |
+
}
|
741 |
+
}
|
742 |
+
)
|
743 |
+
|
744 |
+
|
745 |
+
fig.update_layout(updatemenus=updatemenus,
|
746 |
+
sliders=sliders,
|
747 |
+
legend=dict(
|
748 |
+
yanchor= 'top',
|
749 |
+
xanchor= 'left',
|
750 |
+
orientation="h")
|
751 |
+
)
|
752 |
+
|
753 |
+
|
754 |
+
fig.update_layout(margin=dict(b=0, r=0))
|
755 |
+
|
756 |
+
# fig.show() #in jupyter notebook
|
757 |
+
|
758 |
+
return fig
|
759 |
+
|
760 |
+
|
761 |
+
|
762 |
+
# Last function (global one)
|
763 |
+
# how = 'month' or '2months' or 'year'
|
764 |
+
|
765 |
+
def segment_region(latitude, longitude, start_date, end_date, how = 'month'):
|
766 |
+
location = [float(latitude),float(longitude)]
|
767 |
+
how = how[0]
|
768 |
+
#extract the outputs for each image
|
769 |
+
outputs = segment_group(location, start_date, end_date, how = how)
|
770 |
+
|
771 |
+
#extract the intersting values from image
|
772 |
+
months, imgs, imgs_label, nb_values, scores = values_from_outputs(outputs)
|
773 |
+
|
774 |
+
|
775 |
+
#Create the figure
|
776 |
+
fig = plot_imgs_labels(months, imgs, imgs_label, nb_values, scores)
|
777 |
+
|
778 |
return fig
|