|
import numpy as np |
|
from datasets.corners import CornersDataset |
|
import os |
|
import skimage |
|
import cv2 |
|
import itertools |
|
|
|
|
|
mean = [0.485, 0.456, 0.406] |
|
std = [0.229, 0.224, 0.225] |
|
|
|
all_combibations = dict() |
|
for length in range(2, 351): |
|
ids = np.arange(length) |
|
combs = np.array(list(itertools.combinations(ids, 2))) |
|
all_combibations[length] = combs |
|
|
|
|
|
class S3DFloorplanDataset(CornersDataset): |
|
def __init__(self, data_path, phase='train', image_size=256, rand_aug=True, inference=False): |
|
super(S3DFloorplanDataset, self).__init__(image_size, inference) |
|
self.data_path = data_path |
|
self.phase = phase |
|
self.rand_aug = rand_aug |
|
|
|
if phase == 'train': |
|
datalistfile = os.path.join(data_path, 'train_list.txt') |
|
self.training = True |
|
elif phase == 'valid': |
|
datalistfile = os.path.join(data_path, 'valid_list.txt') |
|
self.training = False |
|
else: |
|
datalistfile = os.path.join(data_path, 'test_list.txt') |
|
self.training = False |
|
with open(datalistfile, 'r') as f: |
|
self._data_names = f.readlines() |
|
|
|
def __len__(self): |
|
return len(self._data_names) |
|
|
|
def __getitem__(self, idx): |
|
data_name = self._data_names[idx][:-1] |
|
annot_path = os.path.join(self.data_path, 'annot', data_name + '.npy') |
|
annot = np.load(annot_path, allow_pickle=True, encoding='latin1').tolist() |
|
|
|
density_path = os.path.join(self.data_path, 'density', data_name + '.png') |
|
normal_path = os.path.join(self.data_path, 'normals', data_name + '.png') |
|
|
|
density = cv2.imread(density_path) |
|
normal = cv2.imread(normal_path) |
|
rgb = np.maximum(density, normal) |
|
|
|
if self.image_size != 256: |
|
rgb, annot, det_corners = self.resize_data(rgb, annot, None) |
|
|
|
if self.rand_aug: |
|
image, annot, _ = self.random_aug_annot(rgb, annot, det_corners=None) |
|
else: |
|
image = rgb |
|
rec_mat = None |
|
|
|
corners = np.array(list(annot.keys()))[:, [1, 0]] |
|
|
|
if not self.inference and len(corners) > 150: |
|
new_idx = np.random.randint(0, len(self)) |
|
return self.__getitem__(new_idx) |
|
|
|
if self.training: |
|
|
|
corners += np.random.normal(0, 0, size=corners.shape) |
|
|
|
image = skimage.img_as_float(image) |
|
|
|
|
|
sort_idx = np.lexsort(corners.T) |
|
corners = corners[sort_idx] |
|
|
|
corner_list = [] |
|
for corner_i in range(corners.shape[0]): |
|
corner_list.append((corners[corner_i][1], corners[corner_i][0])) |
|
|
|
raw_data = { |
|
'name': data_name, |
|
'corners': corner_list, |
|
'annot': annot, |
|
'image': image, |
|
'rec_mat': rec_mat, |
|
'annot_path': annot_path, |
|
'img_path': density_path, |
|
} |
|
|
|
return self.process_data(raw_data) |
|
|
|
def process_data(self, data): |
|
img = data['image'] |
|
corners = data['corners'] |
|
annot = data['annot'] |
|
|
|
|
|
img = img.transpose((2, 0, 1)) |
|
raw_img = img.copy() |
|
img = (img - np.array(mean)[:, np.newaxis, np.newaxis]) / np.array(std)[:, np.newaxis, np.newaxis] |
|
img = img.astype(np.float32) |
|
|
|
corners = np.array(corners) |
|
|
|
all_data = { |
|
"annot": annot, |
|
"name": data['name'], |
|
'img': img, |
|
'annot_path': data['annot_path'], |
|
'img_path': data['img_path'], |
|
'raw_img': raw_img, |
|
} |
|
|
|
|
|
if not self.inference: |
|
pixel_labels, gauss_labels = self.get_corner_labels(corners) |
|
all_data['pixel_labels'] = pixel_labels |
|
all_data['gauss_labels'] = gauss_labels |
|
|
|
return all_data |
|
|
|
def random_aug_annot(self, img, annot, det_corners=None): |
|
|
|
img, annot, det_corners = self.random_flip(img, annot, det_corners) |
|
|
|
|
|
|
|
theta = np.random.randint(0, 360) / 360 * np.pi * 2 |
|
r = self.image_size / 256 |
|
origin = [127 * r, 127 * r] |
|
p1_new = [127 * r + 100 * np.sin(theta) * r, 127 * r - 100 * np.cos(theta) * r] |
|
p2_new = [127 * r + 100 * np.cos(theta) * r, 127 * r + 100 * np.sin(theta) * r] |
|
p1_old = [127 * r, 127 * r - 100 * r] |
|
p2_old = [127 * r + 100 * r, 127 * r] |
|
pts1 = np.array([origin, p1_old, p2_old]).astype(np.float32) |
|
pts2 = np.array([origin, p1_new, p2_new]).astype(np.float32) |
|
M_rot = cv2.getAffineTransform(pts1, pts2) |
|
|
|
|
|
all_corners = list(annot.keys()) |
|
if det_corners is not None: |
|
for i in range(det_corners.shape[0]): |
|
all_corners.append(tuple(det_corners[i])) |
|
all_corners_ = np.array(all_corners) |
|
|
|
|
|
|
|
corner_mapping = dict() |
|
ones = np.ones([all_corners_.shape[0], 1]) |
|
all_corners_ = np.concatenate([all_corners_, ones], axis=-1) |
|
aug_corners = np.matmul(M_rot, all_corners_.T).T |
|
|
|
for idx, corner in enumerate(all_corners): |
|
corner_mapping[corner] = aug_corners[idx] |
|
|
|
|
|
new_corners = np.array(list(corner_mapping.values())) |
|
if new_corners.min() <= 0 or new_corners.max() >= (self.image_size - 1): |
|
|
|
return img, annot, None |
|
|
|
|
|
aug_annot = dict() |
|
for corner, connections in annot.items(): |
|
new_corner = corner_mapping[corner] |
|
tuple_new_corner = tuple(new_corner) |
|
aug_annot[tuple_new_corner] = list() |
|
for to_corner in connections: |
|
aug_annot[tuple_new_corner].append(corner_mapping[tuple(to_corner)]) |
|
|
|
|
|
rows, cols, ch = img.shape |
|
new_img = cv2.warpAffine(img, M_rot, (cols, rows), borderValue=(255, 255, 255)) |
|
|
|
y_start = (new_img.shape[0] - self.image_size) // 2 |
|
x_start = (new_img.shape[1] - self.image_size) // 2 |
|
aug_img = new_img[y_start:y_start + self.image_size, x_start:x_start + self.image_size, :] |
|
|
|
return aug_img, aug_annot, None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|