{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/opt/homebrew/lib/python3.9/site-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAPeCAYAAADj01PlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADrQklEQVR4nOzdeVhUZf/H8c8gsogCboAoAe4b7mloboXiUrlmmuWaloF7mva4oGam5q5ptriklllppWXilqWGK+WulaalaOWCuIDC+f3Rj/MwwlH0QQb1/bquua7mPt8593fOoJ3z8XCPzTAMQwAAAAAAAAAAIB0nRzcAAAAAAAAAAEBORYgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDmSTBg0aqEGDBo5uI9sdO3ZMNptN8+fPN8eioqJks9kc19RNTJgwQWXLllVKSoqjW8lyQUFB6tKly01rUj+vt956K3uayiG6dOmioKAgR7dxVwwZMkS1atVydBsAAAAOldOvx2w2m6Kiou76PBs3bpTNZtPGjRvNsQYNGqhixYp3fW4p4+tDALgXEKIDFn799Ve9+OKLKl68uNzc3OTp6ak6depo2rRpunLliqPbu6WUlBQtXLhQjRo1UqFChZQ7d275+PiocePGmjt3rhITEx3d4l118uRJRUVFKTY2NtOviY+P1/jx4/Xqq6/Kyem/fz0mJCRo5MiRqlixojw8PFSwYEFVqVJFffv21cmTJ7O076+//jpbTp4dbf78+bLZbNqxY4ejW7nv9evXTz/99JO+/PJLR7cCAACQaffy9VhQUJBsNptsNpucnJzk7e2tkJAQ9ezZUzExMVk2z5IlSzR16tQs219Wysm9AcCdcHZ0A0BOtGrVKj399NNydXVVp06dVLFiRSUlJemHH37QoEGDtG/fPs2dO9fRbVq6cuWKWrVqpW+//Va1a9fWK6+8Il9fX509e1bfffedXn75ZcXExOj99993SH/Dhg3TkCFD7uocJ0+e1KhRoxQUFKQqVapk6jUffPCBrl+/rg4dOphj165dU7169XTw4EF17txZvXv3VkJCgvbt26clS5aoVatW8vf3z7K+v/76a82aNeuBCNJzknffffe+/O0DSfLz81OLFi301ltv6amnnnJ0OwAAALd0r1+PSVKVKlU0cOBASdLFixd14MABLVu2TO+++6769++vyZMn29VfuXJFzs63F9EsWbJEe/fuVb9+/TL9mnr16unKlStycXG5rblul1VvgYGBunLlinLnzn1X5weArEaIDtzg6NGjat++vQIDA7V+/XoVKVLE3BYREaFffvlFq1atcmCH0vXr15WSkmJ54tO/f399++23mjp1qvr27Wu3beDAgTpy5Iiio6P/pzn+F87Ozrd9gpgd5s2bp6eeekpubm7m2IoVK7R7924tXrxYzz77rF391atXlZSUlCVzX7p0SR4eHlmyL9y++/0kvl27dnr66af122+/qXjx4o5uBwAAwNL9cD0mSUWLFtVzzz1nNzZ+/Hg9++yzmjJlikqVKqVevXqZ29Jeg9wNV69elYuLi5ycnO76XDdjs9kcOj8A3CmWcwFuMGHCBCUkJOj999+3O2FLVbJkSbtg+vr16xozZoxKlCghV1dXBQUF6bXXXsvUcilnzpxR9+7d5evrKzc3N1WuXFkLFiywq0m7RvXUqVPNefbv35/hPk+cOKH33ntPTZo0SRegpypVqpRefvnlTM2RlJSkESNGqHr16vLy8pKHh4fq1q2rDRs2pNvv+fPn1aVLF3l5ecnb21udO3fW+fPn09VZrYm+aNEiVa9eXe7u7ipQoIDat2+vEydO2NWkrte3f/9+NWzYUHny5FHRokU1YcIEs2bjxo16+OGHJUldu3Y1f5XyZuvuHT16VD///LPCwsLsxn/99VdJUp06ddK9JvXXStNav3696tatKw8PD3l7e6tFixY6cOBAhu9///79evbZZ5U/f349+uij6tKli2bNmiVJZs9pj1NKSoqmTp2qChUqyM3NTb6+vnrxxRd17tw5u/0bhqHXX39dxYoVU548edSwYUPt27fP8r1bmTJligIDA+Xu7q769etr79695rZ58+bJZrNp9+7d6V73xhtvKFeuXPrzzz9ve860rNYpz+jnx2azKTIyUsuWLVP58uXl7u6u0NBQ7dmzR5L0zjvvqGTJknJzc1ODBg107Nixm86V9s/E3LlzzT8TDz/8sLZv32732p9//lldunQxf9XYz89P3bp10z///JNh37/88ou6dOkib29veXl5qWvXrrp8+XK697lo0SLVrFlTefLkUf78+VWvXj2tWbPGruabb74xf97y5cun5s2bZ/hZp/5cf/HFF+m2AQAA5CT3+vXYzbi7u+vDDz9UgQIFNHbsWBmGYW67cU30ixcvql+/fgoKCpKrq6t8fHzUqFEj7dq1S9K/10WrVq3S77//bl43pJ7Ppq57/vHHH2vYsGEqWrSo8uTJo/j4+AzXRE+1c+dO1a5dW+7u7goODtacOXPstqcuyXjjufSN+7xZb1Zrot/OdVRmz6cBICvlvFtBAQf76quvVLx4cdWuXTtT9S+88IIWLFigtm3bauDAgYqJidG4ceN04MABLV++3PJ1V65cUYMGDfTLL78oMjJSwcHBWrZsmbp06aLz58+nC8DnzZunq1evqmfPnnJ1dVWBAgUy3O8333yj5OTkdHc9ZEZGc8THx+u9995Thw4d1KNHD128eFHvv/++wsPDtW3bNnOpFMMw1KJFC/3www966aWXVK5cOS1fvlydO3fO1Nxjx47V8OHD1a5dO73wwgv666+/NGPGDNWrV0+7d++Wt7e3WXvu3Dk1adJErVu3Vrt27fTpp5/q1VdfVUhIiJo2bapy5cpp9OjRGjFihHr27Km6detK0k0/0y1btkiSqlWrZjceGBgoSVq4cKGGDRt20y9EXbt2rZo2barixYsrKipKV65c0YwZM1SnTh3t2rUrXSD89NNPq1SpUnrjjTdkGIaqVq2qkydPKjo6Wh9++GG6/b/44ouaP3++unbtqj59+ujo0aOaOXOmdu/erc2bN5t3U48YMUKvv/66mjVrpmbNmmnXrl1q3Ljxbd01v3DhQl28eFERERG6evWqpk2bpscee0x79uyRr6+v2rZtq4iICC1evFhVq1a1e+3ixYvVoEEDFS1aNNPzZYXvv/9eX375pSIiIiRJ48aN0xNPPKHBgwfr7bff1ssvv6xz585pwoQJ6tatm9avX3/LfS5ZskQXL17Uiy++KJvNpgkTJqh169b67bffzOMdHR2t3377TV27dpWfn5/568X79u3Tjz/+mO5npl27dgoODta4ceO0a9cuvffee/Lx8dH48ePNmlGjRikqKkq1a9fW6NGj5eLiopiYGK1fv16NGzeWJH344Yfq3LmzwsPDNX78eF2+fFmzZ8/Wo48+qt27d9v9vHl5ealEiRLavHmz+vfv/78eagAAgLvmXr8eu5W8efOqVatWev/997V//35VqFAhw7qXXnpJn376qSIjI1W+fHn9888/+uGHH3TgwAFVq1ZN//nPf3ThwgX98ccfmjJlirnvtMaMGSMXFxe98sorSkxMvOmd8+fOnVOzZs3Url07dejQQZ988ol69eolFxcXdevW7bbeY2Z6S+t2r6Mycz4NAFnOAGC6cOGCIclo0aJFpupjY2MNScYLL7xgN/7KK68Ykoz169ebY/Xr1zfq169vPp86daohyVi0aJE5lpSUZISGhhp58+Y14uPjDcMwjKNHjxqSDE9PT+PMmTO37Kl///6GJCM2NtZuPDEx0fjrr7/Mx99//21uu9kc169fNxITE+3Gzp07Z/j6+hrdunUzx1asWGFIMiZMmGD32rp16xqSjHnz5pnjI0eONNL+9XPs2DEjV65cxtixY+3m2bNnj+Hs7Gw3Xr9+fUOSsXDhQrv35ufnZ7Rp08Yc2759e7p5b2bYsGGGJOPixYt245cvXzbKlCljSDICAwONLl26GO+//75x+vTpdPuoUqWK4ePjY/zzzz/m2E8//WQ4OTkZnTp1Svf+O3TokG4fERERRkZ/NX///feGJGPx4sV246tXr7YbP3PmjOHi4mI0b97cSElJMetee+01Q5LRuXPnmx6H1J8Fd3d3448//jDHY2JiDElG//79zbEOHToY/v7+RnJysjm2a9euTB33efPmGZKM7du3W9Z07tzZCAwMTDd+48+PYRiGJMPV1dU4evSoOfbOO+8Ykgw/Pz/zz5NhGMbQoUMNSXa1N86VehwKFixonD171hz/4osvDEnGV199ZY5dvnw5XY8fffSRIcnYtGlTur7T/rkxDMNo1aqVUbBgQfP5kSNHDCcnJ6NVq1Z2x9YwDPMzvXjxouHt7W306NHDbntcXJzh5eWVbtwwDKNx48ZGuXLl0o0DAADkFPfD9ZhhGEZgYKDRvHlzy+1TpkwxJBlffPGFOSbJGDlypPncy8vLiIiIuOk8zZs3z/B8ecOGDYYko3jx4unOVVO3bdiwwRxLvcaaNGmSOZaYmGhe3yQlJRmG8d9z+LTn0Vb7tOot9XimvV643euoW51PA8DdwHIuQBrx8fGSpHz58mWq/uuvv5YkDRgwwG489QtkbrZW39dffy0/Pz+7L7HMnTu3+vTpo4SEBH333Xd29W3atFHhwoUz/R5u/Jf+r7/+WoULFzYfqXdY32qOXLlymXcspKSk6OzZs7p+/bpq1Khh/iph6v6dnZ3t1vXLlSuXevfufcueP//8c6WkpKhdu3b6+++/zYefn59KlSqVbumYvHnz2t1p7+Liopo1a+q333675VxW/vnnHzk7O6c7bu7u7oqJidGgQYMk/fsrjN27d1eRIkXUu3dv89dET506pdjYWHXp0sXurpRKlSqpUaNG5s9KWi+99FKm+1u2bJm8vLzUqFEju2NUvXp15c2b1zxGa9euVVJSknr37m13B/TtfNmQJLVs2dLuTvKaNWuqVq1adu+jU6dOOnnypN3ns3jxYrm7u6tNmza3NV9WePzxx+3uUqlVq5akf3+u0/6ZTh3PzM/LM888o/z585vPU3+rIe1r3d3dzf++evWq/v77bz3yyCOSZPdnJNWNn3vdunX1zz//mH92V6xYoZSUFI0YMUJOTvb/m079TKOjo3X+/Hl16NDB7uchV65cqlWrVobLLeXPn19///33Ld8zAACAo9wP12OZkXrNcfHiRcsab29vxcTE6OTJk3c8T+fOne3OVW/G2dlZL774ovncxcVFL774os6cOaOdO3fecQ+3khXXUTeeTwPA3UCIDqSRur71zU5m0vr999/l5OSkkiVL2o37+fnJ29tbv//++01fW6pUqXQhWbly5cztaQUHB2eqp9QTzoSEBLvxOnXqKDo6WtHR0eZyEDeymmPBggWqVKmS3NzcVLBgQRUuXFirVq3ShQsX7N5PkSJF0oXQZcqUuWXPR44ckWEYKlWqlF3QX7hwYR04cEBnzpyxqy9WrFi6JTLy58+fbm3wrOLl5aUJEybo2LFjOnbsmN5//32VKVNGM2fO1JgxYyT99/PK6P2WK1dOf//9ty5dumQ3ntnPVPr3GF24cEE+Pj7pjlFCQoJ5jFL7KFWqlN3rCxcubBcG38qNr5ek0qVL261/2KhRIxUpUkSLFy+W9O8/snz00Udq0aJFpi98stJDDz1k99zLy0uSFBAQkOF4Zn5ebtxn6jFM+9qzZ8+qb9++8vX1lbu7uwoXLmx+tmn/jGR2n7/++qucnJxUvnx5y76OHDkiSXrsscfS/TysWbMm3Z8Z6d8ll262HBEAAICj3Q/XY5mReq12s3PmCRMmaO/evQoICFDNmjUVFRV12zcN3U7P/v7+8vDwsBsrXbq0JKVbAz0r3cl1VGbO0QEgq7EmOpCGp6en/P397b5AMTOyI5jK7B0EZcuWlSTt3btXlStXNscLFy5sfrngokWLMj3HokWL1KVLF7Vs2VKDBg2Sj4+PcuXKpXHjxplfuvm/SklJkc1m0zfffKNcuXKl235jMJ9RjSS7L+a5XQULFtT169d18eLFm57MBgYGqlu3bmrVqpWKFy+uxYsX6/XXX7+jOTP7mUr/HiMfHx8zsL5RVt0Vczty5cqlZ599Vu+++67efvttbd68WSdPnryj9fgzYvXnKjk52bKf2xnPzM9LZl7brl07bdmyRYMGDVKVKlWUN29epaSkqEmTJkpJScnSflKl7vfDDz+Un59fuu3Ozun/937u3DkVKlQo03MAAABkt/vheiwzUt/fjeF/Wu3atVPdunW1fPlyrVmzRhMnTtT48eP1+eefq2nTppmaJyt7lm7//PxuuRvXgwBwK4TowA2eeOIJzZ07V1u3blVoaOhNawMDA5WSkqIjR46YdyxI0unTp3X+/PkMl0xJ+9qff/5ZKSkpdnc/HDx40Nx+J5o2bapcuXJp8eLF6tix4x3tI61PP/1UxYsX1+eff2530jRy5Ei7usDAQK1bt04JCQl2ofehQ4duOUeJEiVkGIaCg4PNux3+V7d7Ip36jw9Hjx5VpUqVblmfP39+lShRwjwBTv28Mnq/Bw8eVKFChdLd2ZERq75LlCihtWvXqk6dOjc9GU7t48iRIypevLg5/tdff93WnRmpdzqndfjw4XRf6tOpUydNmjRJX331lb755hsVLlxY4eHhmZ7nZvLnz6/z58+nG7/ZHUXZ7dy5c1q3bp1GjRqlESNGmOMZHb/MKlGihFJSUrR//37zi3szqpEkHx8f8x/HbuXo0aN2/7AGAACQE93r12O3kpCQoOXLlysgIMCu54wUKVJEL7/8sl5++WWdOXNG1apV09ixY80QPSv/8eDkyZO6dOmS3TXL4cOHJcm8Bki94/vGc/SMzs8z21tWXUcBwN3Gci7ADQYPHiwPDw+98MILOn36dLrtv/76q6ZNmyZJatasmSRp6tSpdjWTJ0+WJDVv3txynmbNmikuLk5Lly41x65fv64ZM2Yob968ql+//h31/9BDD6lbt2765ptvNHPmzAxrbudf6FP/lT/ta2JiYrR161a7umbNmun69euaPXu2OZacnKwZM2bcco7WrVsrV65cGjVqVLreDMPQP//8k+l+U6WeaGUUwmYk9QR9x44dduM//fRThutI//7779q/f7/5a4dFihRRlSpVtGDBArs59+7dqzVr1pg/K3fad7t27ZScnGwuH5PW9evXzfqwsDDlzp1bM2bMsDuWN/6M3sqKFSv0559/ms+3bdummJiYdHe9VKpUSZUqVdJ7772nzz77TO3bt8/wLug7UaJECV24cEE///yzOXbq1CktX748S/afFTL68yHd/vFOq2XLlnJyctLo0aPT3cmeOk94eLg8PT31xhtv6Nq1a+n28ddff9k9v3Dhgn799VfVrl37jvsCAADIDvf69djNXLlyRc8//7zOnj2r//znPze9s/vGZQF9fHzk7+9vfieT9O+1Q0bLB96J69ev65133jGfJyUl6Z133lHhwoVVvXp1Sf+9kWPTpk12vc6dOzfd/jLbW1ZdRwHA3cad6MANSpQooSVLluiZZ55RuXLl1KlTJ1WsWFFJSUnasmWLli1bpi5dukiSKleurM6dO2vu3Lk6f/686tevr23btmnBggVq2bKlGjZsaDlPz5499c4776hLly7auXOngoKC9Omnn2rz5s2aOnXq/7Sm9NSpU3X06FH17t1bH3/8sZ588kn5+Pjo77//1ubNm/XVV19laq1y6d87QT7//HO1atVKzZs319GjRzVnzhyVL1/ebt31J598UnXq1NGQIUN07NgxlS9fXp9//nmmTpxKlCih119/XUOHDtWxY8fUsmVL5cuXT0ePHtXy5cvVs2dPvfLKK7d1DEqUKCFvb2/NmTNH+fLlk4eHh2rVqmW5LmDx4sVVsWJFrV27Vt26dTPHo6OjNXLkSD311FN65JFHlDdvXv3222/64IMPlJiYqKioKLN24sSJatq0qUJDQ9W9e3dduXJFM2bMkJeXl13dzaSeoPbp00fh4eHKlSuX2rdvr/r16+vFF1/UuHHjFBsbq8aNGyt37tw6cuSIli1bpmnTpqlt27YqXLiwXnnlFY0bN05PPPGEmjVrpt27d+ubb765raU8SpYsqUcffVS9evVSYmKipk6dqoIFC2rw4MHpajt16mR+Pre7lMsHH3yg1atXpxvv27ev2rdvr1dffVWtWrVSnz59dPnyZc2ePVulS5fO8As7HcHT01P16tXThAkTdO3aNRUtWlRr1qzR0aNH73ifJUuW1H/+8x+NGTNGdevWVevWreXq6qrt27fL399f48aNk6enp2bPnq3nn39e1apVU/v27VW4cGEdP35cq1atUp06dez+EW3t2rUyDEMtWrTIircNAABw19wP12OS9Oeff5rLaCYkJGj//v1atmyZ4uLiNHDgQLsv8bzRxYsXVaxYMbVt21aVK1dW3rx5tXbtWm3fvl2TJk0y66pXr66lS5dqwIABevjhh5U3b149+eSTd9Svv7+/xo8fr2PHjql06dJaunSpYmNjNXfuXOXOnVuSVKFCBT3yyCMaOnSozp49qwIFCujjjz/W9evX0+3vdnrLiusoALjrDAAZOnz4sNGjRw8jKCjIcHFxMfLly2fUqVPHmDFjhnH16lWz7tq1a8aoUaOM4OBgI3fu3EZAQIAxdOhQuxrDMIz69esb9evXtxs7ffq00bVrV6NQoUKGi4uLERISYsybN8+u5ujRo4YkY+LEibfV//Xr14158+YZjz32mFGgQAHD2dnZKFSokPH4448bc+bMMa5cuZKpOVJSUow33njDCAwMNFxdXY2qVasaK1euNDp37mwEBgba1f7zzz/G888/b3h6ehpeXl7G888/b+zevduQZPe+Ro4caWT0189nn31mPProo4aHh4fh4eFhlC1b1oiIiDAOHTpk1tSvX9+oUKFCutdm1M8XX3xhlC9f3nB2dk7XQ0YmT55s5M2b17h8+bI59ttvvxkjRowwHnnkEcPHx8dwdnY2ChcubDRv3txYv359un2sXbvWqFOnjuHu7m54enoaTz75pLF//367mtT3/9dff6V7/fXr143evXsbhQsXNmw2W7rjNHfuXKN69eqGu7u7kS9fPiMkJMQYPHiwcfLkSbMmOTnZGDVqlFGkSBHD3d3daNCggbF3714jMDDQ6Ny5802PQdqfhUmTJhkBAQGGq6urUbduXeOnn37K8DWnTp0ycuXKZZQuXfqm+05r3rx5hiTLx4kTJwzDMIw1a9YYFStWNFxcXIwyZcoYixYtyvDnR5IRERFh+V7S2rBhgyHJWLZsmTl248/Pzf5MSDJGjhxpPv/jjz+MVq1aGd7e3oaXl5fx9NNPGydPnkxXZ/W5px6Lo0eP2o1/8MEHRtWqVQ1XV1cjf/78Rv369Y3o6Oh07yU8PNzw8vIy3NzcjBIlShhdunQxduzYYVf3zDPPGI8++mi69wIAAJBT3cvXY4GBgeZ5rc1mMzw9PY0KFSoYPXr0MGJiYjJ8Tdpzx8TERGPQoEFG5cqVjXz58hkeHh5G5cqVjbffftvuNQkJCcazzz5reHt7G5LM89mMzndTpW7bsGGD3bGpUKGCsWPHDiM0NNRwc3MzAgMDjZkzZ6Z7/a+//mqEhYUZrq6uhq+vr/Haa68Z0dHR6fZp1Vvq8bzxOP8v11FW59MAkJVshsE3LwCA9O+SF8WLF9eECRPUvXt3R7dzz/j7779VpEgRjRgxQsOHD3d0O7hBXFycgoOD9fHHH3MnOgAAAAAAd4A10QHg/3l5eWnw4MGaOHFiurWoYW3+/PlKTk7W888/7+hWkIGpU6cqJCSEAB0AAAAAgDvEnegAgDuyfv167d+/X8OHD1fDhg31+eefO7olAAAAAACALEeIDgC4Iw0aNNCWLVtUp04dLVq0SEWLFnV0SwAAAAAAAFmOEB0AAAAAAAAAAAusiQ4AAAAAAAAAgAVCdAAAAAAAAAAALDhnpiglJUUnT55Uvnz5ZLPZ7nZPAAAAwB0zDEMXL16Uv7+/nJy4ZyS7ce0AAACAe0Vmrx0yFaKfPHlSAQEBWdYcAAAAcLedOHFCxYoVc3QbDxyuHQAAAHCvudW1Q6ZC9Hz58kmSHvLz426e/1eocGFHt5Dj+BQu5OgWcpwihQs6uoUcp3oB/g5JyymovKNbyHEq2i44uoUc52xgVUe3kKOUSznj6BZynLPlmzi6hRwlISFBj4fWNM9hkb1Sj/uJEyfk6enp4G4AAAAAa/Hx8QoICLjltUOmQvTUX8N0cnIiRP9/zrlyObqFHCe3c6Z+nB4oLi4ujm4hx3F35e+QtJzc3RzdQo6T13bV0S3kOIl58ji6hRwlX4q7o1vIcZIIizPEUiKOkXrcPT09CdEBAABwT7jVtQNpFgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALDg7OgGAAAAAABZI7RGdUe3kGW27tjp6BYAAAAkcSc6AAAAAAAAAACWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAADcZZs2bdKTTz4pf39/2Ww2rVixwm67YRgaMWKEihQpInd3d4WFhenIkSN2NWfPnlXHjh3l6ekpb29vde/eXQkJCXY1P//8s+rWrSs3NzcFBARowoQJ6XpZtmyZypYtKzc3N4WEhOjrr7++7V4AAACABwkhOgAAAHCXXbp0SZUrV9asWbMy3D5hwgRNnz5dc+bMUUxMjDw8PBQeHq6rV6+aNR07dtS+ffsUHR2tlStXatOmTerZs6e5PT4+Xo0bN1ZgYKB27typiRMnKioqSnPnzjVrtmzZog4dOqh79+7avXu3WrZsqZYtW2rv3r231QsAAADwILEZhmHcqig+Pl5eXl4K8veXkxO5uyT5+Pg4uoUcx9ensKNbyHH8fTkmN6pZkL9D0nIqXtHRLeQ4lW3nHd1CjvNPUA1Ht5CjVEg57egWcpx/Qp5wdAs5SsLFi6oVUl4XLlyQp6eno9tJx2azafny5WrZsqWkf+/89vf318CBA/XKK69Iki5cuCBfX1/Nnz9f7du314EDB1S+fHlt375dNWr8+3fC6tWr1axZM/3xxx/y9/fX7Nmz9Z///EdxcXFycXGRJA0ZMkQrVqzQwYMHJUnPPPOMLl26pJUrV5r9PPLII6pSpYrmzJmTqV5uJfXaIace//tdaI3qjm4hy2zdsdPRLQAAgPtcZs9dSbMAAAAABzp69Kji4uIUFhZmjnl5ealWrVraunWrJGnr1q3y9vY2A3RJCgsLk5OTk2JiYsyaevXqmQG6JIWHh+vQoUM6d+6cWZN2ntSa1Hky08uNEhMTFR8fb/cAAAAA7ieE6AAAAIADxcXFSZJ8fX3txn19fc1tcXFx6X4T0tnZWQUKFLCryWgfaeewqkm7/Va93GjcuHHy8vIyHwEBAZl41wAAAMC9gxAdAAAAwB0bOnSoLly4YD5OnDjh6JYAAACALEWIDgAAADiQn5+fJOn0afv1/k+fPm1u8/Pz05kzZ+y2X79+XWfPnrWryWgfaeewqkm7/Va93MjV1VWenp52DwAAAOB+QogOAAAAOFBwcLD8/Py0bt06cyw+Pl4xMTEKDQ2VJIWGhur8+fPaufO/X7S4fv16paSkqFatWmbNpk2bdO3aNbMmOjpaZcqUUf78+c2atPOk1qTOk5leAAAAgAcNIToAAABwlyUkJCg2NlaxsbGS/v0Cz9jYWB0/flw2m039+vXT66+/ri+//FJ79uxRp06d5O/vr5YtW0qSypUrpyZNmqhHjx7atm2bNm/erMjISLVv317+/v6SpGeffVYuLi7q3r279u3bp6VLl2ratGkaMGCA2Uffvn21evVqTZo0SQcPHlRUVJR27NihyMhIScpULwAAAMCDxtnRDQAAAAD3ux07dqhhw4bm89Rgu3Pnzpo/f74GDx6sS5cuqWfPnjp//rweffRRrV69Wm5ubuZrFi9erMjISD3++ONycnJSmzZtNH36dHO7l5eX1qxZo4iICFWvXl2FChXSiBEj1LNnT7Omdu3aWrJkiYYNG6bXXntNpUqV0ooVK1SxYkWzJjO9AAAAAA8Sm2EYxq2K4uPj5eXlpSB/fzk5cfO6JPn4+Di6hRzH16ewo1vIcfx9OSY3qlmQv0PScipe8dZFD5jKtvOObiHH+SeohqNbyFEqpJy+ddED5p+QJxzdQo6ScPGiaoWU14ULF1if2wFSrx04/o4RWqO6o1vIMlt37Lx1EQAAwP8gs+eupFkAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFZ0c3AAAAAAAAgDvXsmkTR7eQZVZ8s9rRLQBAOtyJDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAvOjm4AAAAAAAAAAHB7SjwU4OgWssyvx084uoWb4k50AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAB0tOTtbw4cMVHBwsd3d3lShRQmPGjJFhGGaNYRgaMWKEihQpInd3d4WFhenIkSN2+zl79qw6duwoT09PeXt7q3v37kpISLCr+fnnn1W3bl25ubkpICBAEyZMSNfPsmXLVLZsWbm5uSkkJERff/313XnjAAAAwD2AEB0AAABwsPHjx2v27NmaOXOmDhw4oPHjx2vChAmaMWOGWTNhwgRNnz5dc+bMUUxMjDw8PBQeHq6rV6+aNR07dtS+ffsUHR2tlStXatOmTerZs6e5PT4+Xo0bN1ZgYKB27typiRMnKioqSnPnzjVrtmzZog4dOqh79+7avXu3WrZsqZYtW2rv3r3ZczAAAACAHIYQHQAAAHCwLVu2qEWLFmrevLmCgoLUtm1bNW7cWNu2bZP0713oU6dO1bBhw9SiRQtVqlRJCxcu1MmTJ7VixQpJ0oEDB7R69Wq99957qlWrlh599FHNmDFDH3/8sU6ePClJWrx4sZKSkvTBBx+oQoUKat++vfr06aPJkyebvUybNk1NmjTRoEGDVK5cOY0ZM0bVqlXTzJkzs/24AAAAADkBIToAAADgYLVr19a6det0+PBhSdJPP/2kH374QU2bNpUkHT16VHFxcQoLCzNf4+XlpVq1amnr1q2SpK1bt8rb21s1atQwa8LCwuTk5KSYmBizpl69enJxcTFrwsPDdejQIZ07d86sSTtPak3qPAAAAMCDxtnRDQAAAAAPuiFDhig+Pl5ly5ZVrly5lJycrLFjx6pjx46SpLi4OEmSr6+v3et8fX3NbXFxcfLx8bHb7uzsrAIFCtjVBAcHp9tH6rb8+fMrLi7upvPcKDExUYmJiebz+Pj423rvAAAAQE7HnegAAACAg33yySdavHixlixZol27dmnBggV66623tGDBAke3dkvjxo2Tl5eX+QgICHB0SwAAAECWIkQHAAAAHGzQoEEaMmSI2rdvr5CQED3//PPq37+/xo0bJ0ny8/OTJJ0+fdrudadPnza3+fn56cyZM3bbr1+/rrNnz9rVZLSPtHNY1aRuv9HQoUN14cIF83HixInbfv8AAABATkaIDgAAADjY5cuX5eRkf2qeK1cupaSkSJKCg4Pl5+endevWmdvj4+MVExOj0NBQSVJoaKjOnz+vnTt3mjXr169XSkqKatWqZdZs2rRJ165dM2uio6NVpkwZ5c+f36xJO09qTeo8N3J1dZWnp6fdAwAAALifEKIDAAAADvbkk09q7NixWrVqlY4dO6bly5dr8uTJatWqlSTJZrOpX79+ev311/Xll19qz5496tSpk/z9/dWyZUtJUrly5dSkSRP16NFD27Zt0+bNmxUZGan27dvL399fkvTss8/KxcVF3bt31759+7R06VJNmzZNAwYMMHvp27evVq9erUmTJungwYOKiorSjh07FBkZme3HBQAAAMgJ+GJRAAAAwMFmzJih4cOH6+WXX9aZM2fk7++vF198USNGjDBrBg8erEuXLqlnz546f/68Hn30Ua1evVpubm5mzeLFixUZGanHH39cTk5OatOmjaZPn25u9/Ly0po1axQREaHq1aurUKFCGjFihHr27GnW1K5dW0uWLNGwYcP02muvqVSpUlqxYoUqVqyYPQcDAAAAyGFshmEYtyqKj4+Xl5eXgvz90/2a6YPKx8fH0S3kOL4+hR3dQo7j78sxuVHNgvwdkpZTcQKJG1W2nXd0CznOP0E1HN1CjlIh5fStix4w/4Q84egWcpSEixdVK6S8Lly4wNIiDpB67cDxd4zQGtUd3UKW2bpj562LAEiSWjZt4ugWssyKb1Y7ugXgnlHiofvnC91/Pe6Y79XJ7LkraRYAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAZGD16tC5fvpxu/MqVKxo9erQDOgIAAADgCIToAAAAQAZGjRqlhISEdOOXL1/WqFGjHNARAAAAAEcgRAcAAAAyYBiGbDZbuvGffvpJBQoUcEBHAAAAABzB2dENAAAAADlJ/vz5ZbPZZLPZVLp0absgPTk5WQkJCXrppZcc2CEAAACA7ESIDgAAAKQxdepUGYahbt26adSoUfLy8jK3ubi4KCgoSKGhoQ7sEAAAAEB2IkQHAAAA0ujcubMkKTg4WLVr11bu3Lkd3BEAAAAARyJEBwAAADJQv359paSk6PDhwzpz5oxSUlLstterV89BnQEAAECSIrp2cnQLWWbWvIWObgE3QYgOAAAAZODHH3/Us88+q99//12GYdhts9lsSk5OdlBnAAAAALITIToAAACQgZdeekk1atTQqlWrVKRIEbsvGAUAAADw4CBEBwAAADJw5MgRffrppypZsqSjWwEAAADgQE6ObgAAAADIiWrVqqVffvnF0W0AAAAAcDDuRAcAAAAy0Lt3bw0cOFBxcXEKCQlR7ty57bZXqlTJQZ0BAAAAyE6E6AAAAEAG2rRpI0nq1q2bOWaz2WQYBl8sCgAAADxACNEBAACADBw9etTRLQAAAADIAQjRAQAAgAwEBgY6ugUAAAAAOQAhOgAAAJCBhQsX3nR7p06dsqkTAAAAAI5EiA4AAABkoG/fvnbPr127psuXL8vFxUV58uQhRAcAAAAeEE6ObgAAAADIic6dO2f3SEhI0KFDh/Too4/qo48+cnR7AAAAALIJIToAAACQSaVKldKbb76Z7i51AAAAAPcvQnQAAADgNjg7O+vkyZOObgMAAABANmFNdAAAACADX375pd1zwzB06tQpzZw5U3Xq1HFQVwAAAACyG3eiAwAAABlo2bKl3aN169aKiopSpUqV9MEHH2T5fH/++aeee+45FSxYUO7u7goJCdGOHTvM7YZhaMSIESpSpIjc3d0VFhamI0eO2O3j7Nmz6tixozw9PeXt7a3u3bsrISHBrubnn39W3bp15ebmpoCAAE2YMCFdL8uWLVPZsmXl5uamkJAQff3111n+fgEAAIB7BSE6AAAAkIGUlBS7R3JysuLi4rRkyRIVKVIkS+c6d+6c6tSpo9y5c+ubb77R/v37NWnSJOXPn9+smTBhgqZPn645c+YoJiZGHh4eCg8P19WrV82ajh07at++fYqOjtbKlSu1adMm9ezZ09weHx+vxo0bKzAwUDt37tTEiRMVFRWluXPnmjVbtmxRhw4d1L17d+3evdv8R4S9e/dm6XsGAAAA7hUs5wIAAADcgmEYkiSbzXZX9j9+/HgFBARo3rx55lhwcLDd/FOnTtWwYcPUokULSdLChQvl6+urFStWqH379jpw4IBWr16t7du3q0aNGpKkGTNmqFmzZnrrrbfk7++vxYsXKykpSR988IFcXFxUoUIFxcbGavLkyWbYPm3aNDVp0kSDBg2SJI0ZM0bR0dGaOXOm5syZc1fePwAAAJCTcSc6AAAAYGHhwoUKCQmRu7u73N3dValSJX344YdZPs+XX36pGjVq6Omnn5aPj4+qVq2qd99919x+9OhRxcXFKSwszBzz8vJSrVq1tHXrVknS1q1b5e3tbQbokhQWFiYnJyfFxMSYNfXq1ZOLi4tZEx4erkOHDuncuXNmTdp5UmtS5wEAAAAeNIToAAAAQAYmT56sXr16qVmzZvrkk0/0ySefqEmTJnrppZc0ZcqULJ3rt99+0+zZs1WqVCl9++236tWrl/r06aMFCxZIkuLi4iRJvr6+dq/z9fU1t8XFxcnHx8duu7OzswoUKGBXk9E+0s5hVZO6/UaJiYmKj4+3ewAAAAD3E5ZzAQAAADIwY8YMzZ49W506dTLHnnrqKVWoUEFRUVHq379/ls2VkpKiGjVq6I033pAkVa1aVXv37tWcOXPUuXPnLJvnbhg3bpxGjRrl6DYAAACAu4Y70QEAAIAMnDp1SrVr1043Xrt2bZ06dSpL5ypSpIjKly9vN1auXDkdP35ckuTn5ydJOn36tF3N6dOnzW1+fn46c+aM3fbr16/r7NmzdjUZ7SPtHFY1qdtvNHToUF24cMF8nDhxInNvGgAAALhHEKIDAAAAGShZsqQ++eSTdONLly5VqVKlsnSuOnXq6NChQ3Zjhw8fVmBgoKR/v2TUz89P69atM7fHx8crJiZGoaGhkqTQ0FCdP39eO3fuNGvWr1+vlJQU1apVy6zZtGmTrl27ZtZER0erTJkyyp8/v1mTdp7UmtR5buTq6ipPT0+7BwAAAHA/YTkXAAAAIAOjRo3SM888o02bNqlOnTqSpM2bN2vdunUZhuv/i/79+6t27dp644031K5dO23btk1z587V3LlzJUk2m039+vXT66+/rlKlSik4OFjDhw+Xv7+/WrZsKenfO9ebNGmiHj16aM6cObp27ZoiIyPVvn17+fv7S5KeffZZjRo1St27d9err76qvXv3atq0aXZrvPft21f169fXpEmT1Lx5c3388cfasWOH2QsAAADwoCFEBwAAADLQpk0bxcTEaMqUKVqxYoWkf4Pqbdu2qWrVqlk618MPP6zly5dr6NChGj16tIKDgzV16lR17NjRrBk8eLAuXbqknj176vz583r00Ue1evVqubm5mTWLFy9WZGSkHn/8cTk5OalNmzaaPn26ud3Ly0tr1qxRRESEqlevrkKFCmnEiBHq2bOnWVO7dm0tWbJEw4YN02uvvaZSpUppxYoVqlixYpa+ZwAAAOBeQYgOAAAAWKhevboWLVqULXM98cQTeuKJJyy322w2jR49WqNHj7asKVCggJYsWXLTeSpVqqTvv//+pjVPP/20nn766Zs3DAAAADwgWBMdAAAASOPkyZN65ZVXFB8fn27bhQsXNGjQoHRfvAkAAADg/kWIDgAAAKQxefJkxcfHZ/gFmV5eXrp48aImT57sgM4AAAAAOAIhOgAAAJDG6tWr1alTJ8vtnTp10sqVK7OxIwAAAACORIgOAAAApHH06FE99NBDltuLFSumY8eOZV9DAAAAAByKEB0AAABIw93d/aYh+bFjx+Tu7p59DQEAAABwKEJ0AAAAII1atWrpww8/tNy+cOFC1axZMxs7AgAAAOBIzo5uAAAAAMhJXnnlFTVq1EheXl4aNGiQfH19JUmnT5/WhAkTNH/+fK1Zs8bBXQIAAADILoToAAAAQBoNGzbUrFmz1LdvX02ZMkWenp6y2Wy6cOGCcufOrRkzZuixxx5zdJsAAAAAsgkhOgAAAHCDF198UU888YQ++eQT/fLLLzIMQ6VLl1bbtm1VrFgxR7cHAAAAIBsRogMAAAAZKFq0qPr37+/oNgAAAAA4GF8sCgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWHB2dAMAAABATpE/f37ZbLZM1Z49e/YudwMAAAAgJyBEBwAAAP7f1KlTHd0CAAAAgByGEB0AAAD4f507d3Z0CwAAAAByGNZEBwAAACz8+uuvGjZsmDp06KAzZ85Ikr755hvt27fPwZ0BAAAAyC6E6AAAAEAGvvvuO4WEhCgmJkaff/65EhISJEk//fSTRo4c6eDuAAAAAGQXQnQAAAAgA0OGDNHrr7+u6Ohoubi4mOOPPfaYfvzxRwd2BgAAACA7EaIDAAAAGdizZ49atWqVbtzHx0d///23AzoCAAAA4AiE6AAAAEAGvL29derUqXTju3fvVtGiRR3QEQAAAABHIEQHAAAAMtC+fXu9+uqriouLk81mU0pKijZv3qxXXnlFnTp1cnR7AAAAALIJIToAAACQgTfeeENly5ZVQECAEhISVL58edWrV0+1a9fWsGHDHN0eAAAAgGzi7OgGAAAAgJzIxcVF7777rkaMGKE9e/YoISFBVatWValSpRzdGgAAAIBsxJ3oAAAAQAY2bNggSQoICFCzZs3Url07M0B/5513HNkaAAAAgGxEiA4AAABkoEmTJho0aJCuXbtmjv3999968sknNWTIEAd2BgAAACA7EaIDAAAAGdiwYYOWL1+uhx9+WPv379eqVatUsWJFxcfHKzY21tHtAQAAAMgmhOgAAABABmrXrq3Y2FhVrFhR1apVU6tWrdS/f39t3LhRgYGBjm4PAAAAQDYhRAcAAAAsHD58WDt27FCxYsXk7OysQ4cO6fLly45uCwAAAEA2IkQHAAAAMvDmm28qNDRUjRo10t69e7Vt2zbt3r1blSpV0tatWx3dHgAAAIBsQogOAAAAZGDatGlasWKFZsyYITc3N1WsWFHbtm1T69at1aBBA0e3BwAAACCbODu6AQAAACAn2rNnjwoVKmQ3ljt3bk2cOFFPPPGEg7oCAAAAkN0I0QEAAIAM3Bigp1W/fv1s7AQAMmfBK10c3UKW6fzWfEe3AACAiRAdAAAA+H+tW7fW/Pnz5enpqdatW9+09vPPP8+mrgAAAAA4EiE6AAAA8P+8vLxks9kkSZ6enuZ/AwAAAHhwEaIDAAAA/2/evHnmf8+fP99xjQAAAADIMZwc3QAAAACQk6SkpGj8+PGqU6eOHn74YQ0ZMkRXrlxxdFsAAAAAHIQQHQAAAEhj7Nixeu2115Q3b14VLVpU06ZNU0REhKPbAgAAAOAghOgAAABAGgsXLtTbb7+tb7/9VitWrNBXX32lxYsXKyUlxdGtAQAAAHAAQnQAAAAgjePHj6tZs2bm87CwMNlsNp08edKBXQEAAABwFEJ0AAAAII3r16/Lzc3Nbix37ty6du2agzoCAAAA4EjOjm4AAAAAyEkMw1CXLl3k6upqjl29elUvvfSSPDw8zLHPP//cEe0BAAAAyGaE6AAAAEAanTt3Tjf23HPPOaAT3KkzK+c4uoUs4/PES45uAQAA4IFHiA4AAACkMW/ePEe3AAAAACAHYU10AAAAAAAAAAAsEKIDAAAAAAAAAGCB5VwAAAAAAACAe9CGb5Y7uoUs07BpK0e3AFjiTnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGDB2dENAAAAAAAAAHfqp9nDHN1Clqnc63VHtwAgA9yJDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAkMO8+eabstls6tevnzl29epVRUREqGDBgsqbN6/atGmj06dP273u+PHjat68ufLkySMfHx8NGjRI169ft6vZuHGjqlWrJldXV5UsWVLz589PN/+sWbMUFBQkNzc31apVS9u2bbsbbxMAAAC4Jzg7ugEAAAAA/7V9+3a98847qlSpkt14//79tWrVKi1btkxeXl6KjIxU69attXnzZklScnKymjdvLj8/P23ZskWnTp1Sp06dlDt3br3xxhuSpKNHj6p58+Z66aWXtHjxYq1bt04vvPCCihQpovDwcEnS0qVLNWDAAM2ZM0e1atXS1KlTFR4erkOHDsnHxyd7DwZwmz6cNdHRLWSZ5yMGOboFAADw/7gTHQAAAMghEhIS1LFjR7377rvKnz+/OX7hwgW9//77mjx5sh577DFVr15d8+bN05YtW/Tjjz9KktasWaP9+/dr0aJFqlKlipo2baoxY8Zo1qxZSkpKkiTNmTNHwcHBmjRpksqVK6fIyEi1bdtWU6ZMMeeaPHmyevTooa5du6p8+fKaM2eO8uTJow8++CB7DwYAAACQQxCiAwAAADlERESEmjdvrrCwMLvxnTt36tq1a3bjZcuW1UMPPaStW7dKkrZu3aqQkBD5+vqaNeHh4YqPj9e+ffvMmhv3HR4ebu4jKSlJO3futKtxcnJSWFiYWXOjxMRExcfH2z0AAACA+wnLuQAAAAA5wMcff6xdu3Zp+/bt6bbFxcXJxcVF3t7eduO+vr6Ki4sza9IG6KnbU7fdrCY+Pl5XrlzRuXPnlJycnGHNwYMHM+x73LhxGjVqVObfKAAAAHCP4U50AAAAwMFOnDihvn37avHixXJzc3N0O7dl6NChunDhgvk4ceKEo1sCAAAAshQhOgAAAOBgO3fu1JkzZ1StWjU5OzvL2dlZ3333naZPny5nZ2f5+voqKSlJ58+ft3vd6dOn5efnJ0ny8/PT6dOn021P3XazGk9PT7m7u6tQoULKlStXhjWp+7iRq6urPD097R4AAADA/YQQHQAAAHCwxx9/XHv27FFsbKz5qFGjhjp27Gj+d+7cubVu3TrzNYcOHdLx48cVGhoqSQoNDdWePXt05swZsyY6Olqenp4qX768WZN2H6k1qftwcXFR9erV7WpSUlK0bt06swYAAAB40LAmOgAAAOBg+fLlU8WKFe3GPDw8VLBgQXO8e/fuGjBggAoUKCBPT0/17t1boaGheuSRRyRJjRs3Vvny5fX8889rwoQJiouL07BhwxQRESFXV1dJ0ksvvaSZM2dq8ODB6tatm9avX69PPvlEq1atMucdMGCAOnfurBo1aqhmzZqaOnWqLl26pK5du2bT0QAAAAByFkJ0AAAA4B4wZcoUOTk5qU2bNkpMTFR4eLjefvttc3uuXLm0cuVK9erVS6GhofLw8FDnzp01evRosyY4OFirVq1S//79NW3aNBUrVkzvvfeewsPDzZpnnnlGf/31l0aMGKG4uDhVqVJFq1evTvdlowAAAMCDghAdAAAAyIE2btxo99zNzU2zZs3SrFmzLF8TGBior7/++qb7bdCggXbv3n3TmsjISEVGRma6VwAAAOB+xproAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAcbNy4cXr44YeVL18++fj4qGXLljp06JBdzdWrVxUREaGCBQsqb968atOmjU6fPm1Xc/z4cTVv3lx58uSRj4+PBg0apOvXr9vVbNy4UdWqVZOrq6tKliyp+fPnp+tn1qxZCgoKkpubm2rVqqVt27Zl+XsGAAAA7hWE6AAAAICDfffdd4qIiNCPP/6o6OhoXbt2TY0bN9alS5fMmv79++urr77SsmXL9N133+nkyZNq3bq1uT05OVnNmzdXUlKStmzZogULFmj+/PkaMWKEWXP06FE1b95cDRs2VGxsrPr166cXXnhB3377rVmzdOlSDRgwQCNHjtSuXbtUuXJlhYeH68yZM9lzMAAAAIAcxtnRDQAAAAAPutWrV9s9nz9/vnx8fLRz507Vq1dPFy5c0Pvvv68lS5bosccekyTNmzdP5cqV048//qhHHnlEa9as0f79+7V27Vr5+vqqSpUqGjNmjF599VVFRUXJxcVFc+bMUXBwsCZNmiRJKleunH744QdNmTJF4eHhkqTJkyerR48e6tq1qyRpzpw5WrVqlT744AMNGTIkG48KAAAAkDNwJzoAAACQw1y4cEGSVKBAAUnSzp07de3aNYWFhZk1ZcuW1UMPPaStW7dKkrZu3aqQkBD5+vqaNeHh4YqPj9e+ffvMmrT7SK1J3UdSUpJ27txpV+Pk5KSwsDCzBgAAAHjQcCc6AAAAkIOkpKSoX79+qlOnjipWrChJiouLk4uLi7y9ve1qfX19FRcXZ9akDdBTt6duu1lNfHy8rly5onPnzik5OTnDmoMHD2bYb2JiohITE83n8fHxt/mOAQAAgJyNO9EBAACAHCQiIkJ79+7Vxx9/7OhWMmXcuHHy8vIyHwEBAY5uCQAAAMhShOgAAABADhEZGamVK1dqw4YNKlasmDnu5+enpKQknT9/3q7+9OnT8vPzM2tOnz6dbnvqtpvVeHp6yt3dXYUKFVKuXLkyrEndx42GDh2qCxcumI8TJ07c/hsHAAAAcjBCdAAAAMDBDMNQZGSkli9frvXr1ys4ONhue/Xq1ZU7d26tW7fOHDt06JCOHz+u0NBQSVJoaKj27NmjM2fOmDXR0dHy9PRU+fLlzZq0+0itSd2Hi4uLqlevbleTkpKidevWmTU3cnV1laenp90DAAAAuJ+wJjoAAADgYBEREVqyZIm++OIL5cuXz1zD3MvLS+7u7vLy8lL37t01YMAAFShQQJ6enurdu7dCQ0P1yCOPSJIaN26s8uXL6/nnn9eECRMUFxenYcOGKSIiQq6urpKkl156STNnztTgwYPVrVs3rV+/Xp988olWrVpl9jJgwAB17txZNWrUUM2aNTV16lRdunRJXbt2zf4DAwAAAOQAhOgAAACAg82ePVuS1KBBA7vxefPmqUuXLpKkKVOmyMnJSW3atFFiYqLCw8P19ttvm7W5cuXSypUr1atXL4WGhsrDw0OdO3fW6NGjzZrg4GCtWrVK/fv317Rp01SsWDG99957Cg8PN2ueeeYZ/fXXXxoxYoTi4uJUpUoVrV69Ot2XjQIAAAAPCkJ0AAAAwMEMw7hljZubm2bNmqVZs2ZZ1gQGBurrr7++6X4aNGig3bt337QmMjJSkZGRt+wJAAAAeBCwJjoAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABWdHNwAAAAAAAPC/OHD8D0e3kGXKPVTM0S0AAG7AnegAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB0AAAAAAAAAAAuE6AAAAAAAAAAAWCBEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAOnMmjVLQUFBcnNzU61atbRt2zZHtwQAAAA4BCE6AAAAADtLly7VgAEDNHLkSO3atUuVK1dWeHi4zpw54+jWAAAAgGxHiA4AAADAzuTJk9WjRw917dpV5cuX15w5c5QnTx598MEHjm4NAAAAyHaE6AAAAABMSUlJ2rlzp8LCwswxJycnhYWFaevWrQ7sDAAAAHAM58wUGYYhSUpJSbmrzdxLricnO7qFHOfa9euObiHHSUpKcnQLOc6VRP7tLi2nK1cd3UKOk2BLdHQLOc6ly5cd3UKOcjHliqNbyHESLl50dAs5SkJCgqT/nsPi9vz9999KTk6Wr6+v3bivr68OHjyYrj4xMVGJif/9u/vChQuSpPj4+Lvb6E1cvHz//D3hdpvH8X66TrmTn6Er99G51R29/8T75/rjdt///fT/wjv57O+n6/E7ef8JV+6fa4jbff/307XCnXz291Pucifv/37Kah117pg6762uHWxGJq4u/vjjDwUEBGRNZwAAAEA2OHHihIoVK+boNu45J0+eVNGiRbVlyxaFhoaa44MHD9Z3332nmJgYu/qoqCiNGjUqu9sEAAAAssytrh0ydSe6v7+/Tpw4oXz58slms2VZcwAAAEBWMwxDFy9elL+/v6NbuScVKlRIuXLl0unTp+3GT58+LT8/v3T1Q4cO1YABA8znKSkpOnv2rAoWLHjfXjvEx8crICBAJ06ckKenp6PbQTbj839w8dk/uPjsH2x8/ve3zF47ZCpEd3Jy4i4eAAAA3DO8vLwc3cI9y8XFRdWrV9e6devUsmVLSf8G4+vWrVNkZGS6eldXV7m6utqNeXt7Z0Onjufp6cnF9AOMz//BxWf/4OKzf7Dx+d+/MnPtkKkQHQAAAMCDY8CAAercubNq1KihmjVraurUqbp06ZK6du3q6NYAAACAbEeIDgAAAMDOM888o7/++ksjRoxQXFycqlSpotWrV6f7slEAAADgQeDk6AYA4G6JiopSlSpVHN3GPa9Bgwbq16+fo9sAAGSzyMhI/f7770pMTFRMTIxq1arl6JZyDFdXV40cOTLdMjZ4MPD5P7j47B9cfPYPNj5/SJLNMAzD0U0AwI3i4uI0duxYrVq1Sn/++ad8fHxUpUoV9evXT48//nim9hEVFaUVK1YoNjY2y/sLCgrS77//LknKkyePypQpo6FDh+rpp5/O8rkc7ezZs8qdO7fy5cvn6FYAAAAAAACyHXeiA8hxjh07purVq2v9+vWaOHGi9uzZo9WrV6thw4aKiIjI1l6uXbtmuW306NE6deqUdu/erYcffljPPPOMtmzZkmFtUlLS3Wrxpj1mhQIFChCgAwAAAACABxYhOoAc5+WXX5bNZtO2bdvUpk0blS5dWhUqVNCAAQP0448/mnXHjx9XixYtlDdvXnl6eqpdu3Y6ffq05X5TUlI0evRoFStWTK6urub6rqmOHTsmm82mpUuXqn79+nJzc9PixYst95cvXz75+fmpdOnSmjVrltzd3fXVV19J+vdO9TFjxqhTp07y9PRUz549JUmfffaZKlSoIFdXVwUFBWnSpEl2+zx16pSaN28ud3d3BQcHa8mSJQoKCtLUqVPNGpvNptmzZ+upp56Sh4eHxo4dK0n64osvVK1aNbm5ual48eIaNWqUrl+/LkkyDENRUVF66KGH5OrqKn9/f/Xp08fc59tvv61SpUrJzc1Nvr6+atu2rbntxuVczp07p06dOil//vzKkyePmjZtqiNHjpjb58+fL29vb3377bcqV66c8ubNqyZNmujUqVOWxxIAAAAAACCnIkQHkKOcPXtWq1evVkREhDw8PNJt9/b2lvRvIN6iRQudPXtW3333naKjo/Xbb7/pmWeesdz3tGnTNGnSJL311lv6+eefFR4erqeeesouAJakIUOGqG/fvjpw4IDCw8Mz1bezs7Ny585td8f5W2+9pcqVK2v37t0aPny4du7cqXbt2ql9+/bas2ePoqKiNHz4cM2fP998TadOnXTy5Elt3LhRn332mebOnaszZ86kmy8qKkqtWrXSnj171K1bN33//ffq1KmT+vbtq/379+udd97R/PnzzYD9s88+05QpU/TOO+/oyJEjWrFihUJCQiRJO3bsUJ8+fTR69GgdOnRIq1evVr169Szfa5cuXbRjxw59+eWX2rp1qwzDULNmzezuiL98+bLeeustffjhh9q0aZOOHz+uV155JVPHEgAAAAAAICdxdnQDAJDWL7/8IsMwVLZs2ZvWrVu3Tnv27NHRo0cVEBAgSVq4cKEqVKig7du36+GHH073mrfeekuvvvqq2rdvL0kaP368NmzYoKlTp2rWrFlmXb9+/dS6detM95yUlKRJkybpwoULeuyxx8zxxx57TAMHDjSfd+zYUY8//riGDx8uSSpdurT279+viRMnqkuXLjp48KDWrl2r7du3q0aNGpKk9957T6VKlUo357PPPquuXbuaz7t166YhQ4aoc+fOkqTixYtrzJgxGjx4sEaOHKnjx4/Lz89PYWFhyp07tx566CHVrFlT0r939Ht4eOiJJ55Qvnz5FBgYqKpVq2b4Xo8cOaIvv/xSmzdvVu3atSVJixcvVkBAgFasWGGuCX/t2jXNmTNHJUqUkPTvl9ONHj0608cUAAAAAAAgp+BOdAA5Sma/6/jAgQMKCAgwA3RJKl++vLy9vXXgwIF09fHx8Tp58qTq1KljN16nTp109akB9q28+uqryps3r/LkyaPx48frzTffVPPmzS33c+DAgQznP3LkiJKTk3Xo0CE5OzurWrVq5vaSJUsqf/786ea+cd8//fSTRo8erbx585qPHj166NSpU7p8+bKefvppXblyRcWLF1ePHj20fPlyc6mXRo0aKTAwUMWLF9fzzz+vxYsX6/Llyxm+5wMHDsjZ2Vm1atUyxwoWLKgyZcrYHcc8efKYAbokFSlSJMM76gEAuBfNmjVLQUFBcnNzU61atbRt2zZHt4S7bNy4cXr44YeVL18++fj4qGXLljp06JCj24IDvPnmm7LZbHbLHeL+9ueff+q5555TwYIF5e7urpCQEO3YscPRbeEuS05O1vDhwxUcHCx3d3eVKFFCY8aMyXRmgfsPITqAHKVUqVKy2Ww6ePCgw3rIaBmZjAwaNEixsbH6448/dO7cOb366qt3tJ87ceO+ExISNGrUKMXGxpqPPXv26MiRI3Jzc1NAQIAOHTqkt99+W+7u7nr55ZdVr149Xbt2Tfny5dOuXbv00UcfqUiRIhoxYoQqV66s8+fP33F/uXPntntus9k42QAA3BeWLl2qAQMGaOTIkdq1a5cqV66s8PBw/rH4Pvfdd98pIiJCP/74o6Kjo3Xt2jU1btxYly5dcnRryEbbt2/XO++8o0qVKjm6FWSTc+fOqU6dOsqdO7e++eYb7d+/X5MmTcrwRifcX8aPH6/Zs2dr5syZOnDggMaPH68JEyZoxowZjm4NDkKIDiBHKVCggMLDwzVr1qwML0pSg91y5crpxIkTOnHihLlt//79On/+vMqXL5/udZ6envL399fmzZvtxjdv3pxhfWYUKlRIJUuWlJ+fn2w22y3ry5Url+H8pUuXVq5cuVSmTBldv35du3fvNrf/8ssvOnfu3C33Xa1aNR06dEglS5ZM93By+vevend3dz355JOaPn26Nm7cqK1bt2rPnj2S/l3TPSwsTBMmTNDPP/+sY8eOaf369Rm+h+vXrysmJsYc++eff3To0KE7Po4AANxLJk+erB49eqhr164qX7685syZozx58uiDDz5wdGu4i1avXq0uXbqoQoUKqly5subPn6/jx49r586djm4N2SQhIUEdO3bUu+++S4D6ABk/frwCAgI0b9481axZU8HBwWrcuLHdb93i/rRlyxa1aNFCzZs3V1BQkNq2bavGjRvz22cPMEJ0ADnOrFmzlJycrJo1a+qzzz7TkSNHdODAAU2fPl2hoaGSpLCwMIWEhKhjx47atWuXtm3bpk6dOql+/fqWy7EMGjRI48eP19KlS3Xo0CENGTJEsbGx6tu3b7a8r4EDB2rdunUaM2aMDh8+rAULFmjmzJnmF26WLVtWYWFh6tmzp7Zt26bdu3erZ8+ecnd3v2VIP2LECC1cuFCjRo3Svn37dODAAX388ccaNmyYJGn+/Pl6//33tXfvXv32229atGiR3N3dFRgYqJUrV2r69OmKjY3V77//roULFyolJUVlypRJN0+pUqXUokUL9ejRQz/88IN++uknPffccypatKhatGiR9QcNAIAcJCkpSTt37lRYWJg55uTkpLCwMG3dutWBnSG7XbhwQdK/N4DgwRAREaHmzZvb/fnH/e/LL79UjRo19PTTT8vHx0dVq1bVu+++6+i2kA1q166tdevW6fDhw5L+XUL1hx9+UNOmTR3cGRyFEB1AjlO8eHHt2rVLDRs21MCBA1WxYkU1atRI69at0+zZsyX9uzzIF198ofz586tevXoKCwtT8eLFtXTpUsv99unTRwMGDNDAgQMVEhKi1atX68svv8zwizvvhmrVqumTTz7Rxx9/rIoVK2rEiBEaPXq0unTpYtYsXLhQvr6+qlevnlq1aqUePXooX758cnNzu+m+w8PDtXLlSq1Zs0YPP/ywHnnkEU2ZMkWBgYGSJG9vb7377ruqU6eOKlWqpLVr1+qrr75SwYIF5e3trc8//1yPPfaYypUrpzlz5uijjz5ShQoVMpxr3rx5ql69up544gmFhobKMAx9/fXX6ZZwAQDgfvP3338rOTlZvr6+duO+vr6Ki4tzUFfIbikpKerXr5/q1KmjihUrOrodZIOPP/5Yu3bt0rhx4xzdCrLZb7/9ptmzZ6tUqVL69ttv1atXL/Xp00cLFixwdGu4y4YMGaL27durbNmyyp07t6pWrap+/fqpY8eOjm4NDmIzWKQWAHKsP/74QwEBAVq7dq0ef/xxR7cDAMAD7eTJkypatKi2bNli/nacJA0ePFjfffed3XJnuH/16tVL33zzjX744QcVK1bM0e3gLjtx4oRq1Kih6Ohocy30Bg0aqEqVKpo6dapjm8Nd5+Lioho1amjLli3mWJ8+fbR9+3Z+A+k+9/HHH2vQoEGaOHGiKlSooNjYWPXr10+TJ09W586dHd0eHMDZ0Q0AAP5r/fr1SkhIUEhIiE6dOqXBgwcrKChI9erVc3RrAAA88AoVKqRcuXLp9OnTduOnT5+Wn5+fg7pCdoqMjNTKlSu1adMmAvQHxM6dO3XmzBlVq1bNHEtOTtamTZs0c+ZMJSYmKleuXA7sEHdTkSJF0n33U7ly5fTZZ585qCNkl0GDBpl3o0tSSEiIfv/9d40bN44Q/QHFci4AkINcu3ZNr732mipUqKBWrVqpcOHC2rhxI0ulAACQA7i4uKh69epat26dOZaSkqJ169bZ3ZmO+49hGIqMjNTy5cu1fv16BQcHO7olZJPHH39ce/bsUWxsrPmoUaOGOnbsqNjYWAL0+1ydOnV06NAhu7HDhw+by2bi/nX58mU5OdnHprly5VJKSoqDOoKjcSc6AOQg4eHhCg8Pd3QbAADAwoABA9S5c2fVqFFDNWvW1NSpU3Xp0iV17drV0a3hLoqIiNCSJUv0xRdfKF++fOYa+F5eXnJ3d3dwd7ib8uXLl27tew8PDxUsWJA18R8A/fv3V+3atfXGG2+oXbt22rZtm+bOnau5c+c6ujXcZU8++aTGjh2rhx56SBUqVNDu3bs1efJkdevWzdGtwUFYEx0AAAAAbsPMmTM1ceJExcXFqUqVKpo+fbpq1arl6LZwF9lstgzH582bZ/cl8XgwsCb6g2XlypUaOnSojhw5ouDgYA0YMEA9evRwdFu4yy5evKjhw4dr+fLlOnPmjPz9/dWhQweNGDFCLi4ujm4PDkCIDgAAAAAAAACABdZEBwAAAAAAAADAAiE6AAAAAAAAAAAWCNEBAAAAAAAAALBAiA4AAAAAAAAAgAVCdAAAAAAAAAAALBCiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAADZyGazacWKFY5uAwCQSYToAAAAAAAAWSguLk69e/dW8eLF5erqqoCAAD355JNat25dls+1ceNG2Ww2nT9/Psv3DQD4l7OjGwAAAAAAALhfHDt2THXq1JG3t7cmTpyokJAQXbt2Td9++60iIiJ08OBBR7eYIcMwlJycLGdnoiIAuBF3ogMAAAAAAGSRl19+WTabTdu2bVObNm1UunRpVahQQQMGDNCPP/6Yrj6jO8ljY2Nls9l07NgxSdLvv/+uJ598Uvnz55eHh4cqVKigr7/+WseOHVPDhg0lSfnz55fNZlOXLl0kSSkpKRo3bpyCg4Pl7u6uypUr69NPP0037zfffKPq1avL1dVVP/zww107LgBwL+OfFwEAAAAAALLA2bNntXr1ao0dO1YeHh7ptnt7e9/RfiMiIpSUlKRNmzbJw8ND+/fvV968eRUQEKDPPvtMbdq00aFDh+Tp6Sl3d3dJ0rhx47Ro0SLNmTNHpUqV0qZNm/Tcc8+pcOHCql+/vrnvIUOG6K233lLx4sWVP3/+O+oPAO53hOgAAAAAAABZ4JdffpFhGCpbtmyW7vf48eNq06aNQkJCJEnFixc3txUoUECS5OPjY4b0iYmJeuONN7R27VqFhoaar/nhhx/0zjvv2IXoo0ePVqNGjbK0XwC43xCiAwAAAAAAZAHDMO7Kfvv06aNevXppzZo1CgsLU5s2bVSpUiXL+l9++UWXL19OF44nJSWpatWqdmM1atS4Kz0DwP2EEB0AAAAAACALlCpVSjab7ba+PNTJ6d+vq0sbwF+7ds2u5oUXXlB4eLhWrVqlNWvWaNy4cZo0aZJ69+6d4T4TEhIkSatWrVLRokXttrm6uto9z2jZGQCAPb5YFAAAAAAAIAsUKFBA4eHhmjVrli5dupRue9ovD01VuHBhSdKpU6fMsdjY2HR1AQEBeumll/T5559r4MCBevfddyVJLi4ukqTk5GSztnz58nJ1ddXx48dVsmRJu0dAQMD/8hYB4IFEiA4AAAAAAJBFZs2apeTkZNWsWVOfffaZjhw5ogMHDmj69Onm+uRppQbbUVFROnLkiFatWqVJkybZ1fTr10/ffvutjh49ql27dmnDhg0qV66cJCkwMFA2m00rV67UX3/9pYSEBOXLl0+vvPKK+vfvrwULFujXX3/Vrl27NGPGDC1YsCBbjgMA3E8I0QEAAAAAALJI8eLFtWvXLjVs2FADBw5UxYoV1ahRI61bt06zZ89OV587d2599NFHOnjwoCpVqqTx48fr9ddft6tJTk5WRESEypUrpyZNmqh06dJ6++23JUlFixbVqFGjNGTIEPn6+ioyMlKSNGbMGA0fPlzjxo0zX7dq1SoFBwff/YMAAPcZm3G3vvUCAAAAAAAAAIB7HHeiAwAAAAAAAABggRAdAAAAAAAAAAALhOgAAAAAAAAAAFggRAcAAAAAAAAAwAIhOgAAAAAAAAAAFgjRAQAAAAAAAACwQIgOAAAAAAAAAIAFQnQAAAAAAAAAACwQogMAAAAAAAAAYIEQHQAAAAAAAAAAC4ToAAAAAAAAAABYIEQHAAAAAAAAAMACIToAAAAAAAAAABYI0QEAAAAAAAAAsECIDgAAAAAAAACABUJ0AAAAAAAAAAAsEKIDAAAAAAAAAGCBEB2AwzRo0EANGjRwdBv3lKioKNlstmyZ68bPZ+PGjbLZbPr000+zZf4uXbooKCgoW+YCAAAAUtlsNkVFRTm6DYfLzuu1G4956nXP33//nS3zBwUFqUuXLtkyF4B7EyE6AEm3PkmpWLHiPRF4X758WVFRUdq4caOjW7ml+fPny2azmQ83Nzf5+/srPDxc06dP18WLF7NknpMnTyoqKkqxsbFZsr+slJN7AwAAuN/t2bNHbdu2VWBgoNzc3FS0aFE1atRIM2bMcHRrOVqDBg3szuOtHjkpiO/SpYtdb3nz5lXx4sXVtm1bffbZZ0pJScmSebZs2aKoqCidP38+S/aXlXJybwByPmdHNwAAWeny5csaNWqUJN0Tob8kjR49WsHBwbp27Zri4uK0ceNG9evXT5MnT9aXX36pSpUqmbXDhg3TkCFDbmv/J0+e1KhRoxQUFKQqVapk+nVr1qy5rXnuxM16e/fdd7PsZB4AAAD2tmzZooYNG+qhhx5Sjx495OfnpxMnTujHH3/UtGnT1Lt3b0e3mGP95z//0QsvvGA+3759u6ZPn67XXntN5cqVM8fTnsfnBK6urnrvvfckSVeuXNHvv/+ur776Sm3btlWDBg30xRdfyNPT06y/k+uBLVu2aNSoUerSpYu8vb0z/borV67I2fnuRlQ36+3QoUNycuI+UwDWCNEB3BdSUlKUlJTk6DbuSNOmTVWjRg3z+dChQ7V+/Xo98cQTeuqpp3TgwAG5u7tLkpydne/6yeXly5eVJ08eubi43NV5biV37twOnR8AAOB+NnbsWHl5eWn79u3pAsUzZ844pql7RKNGjeyeu7m5afr06WrUqFGOvpHH2dlZzz33nN3Y66+/rjfffFNDhw5Vjx49tHTpUnPb3b4eSL2Gc3Nzk5ub212d61ZcXV0dOj+AnI9/ZgNwR1LXx/7kk080duxYFStWTG5ubnr88cf1yy+/pKufO3euSpQoIXd3d9WsWVPff/99hvtNTEzUyJEjVbJkSbm6uiogIECDBw9WYmKiXZ3NZlNkZKQWL16sChUqyNXVVXPmzFHhwoUlSaNGjcrw1yjXr1+vunXrysPDQ97e3mrRooUOHDhgt+/UpW1++eUX8y4FLy8vde3aVZcvX07X86JFi1S9enW5u7urQIECat++vU6cOHG7h9TOY489puHDh+v333/XokWL0vWWVnR0tB599FF5e3srb968KlOmjF577TVJ/35ODz/8sCSpa9eu5jGZP3++pH/v1q9YsaJ27typevXqKU+ePOZrrdZATE5O1muvvSY/Pz95eHjoqaeeSvd+rdYUTLvPW/WW0Zroly5d0sCBAxUQECBXV1eVKVNGb731lgzDsKtL/flYsWKFKlasKFdXV1WoUEGrV6/O+IADAAA8YH799VdVqFAhw7uFfXx80o1l5pz3+++/19NPP62HHnrIPJfv37+/rly5YlcXFxenrl27qlixYnJ1dVWRIkXUokULHTt2zK7u7bffNs/1/f39FRERkW4pjtTz2f3796thw4bKkyePihYtqgkTJtjVJSUlacSIEapevbq8vLzk4eGhunXrasOGDZk/aJk0b9482Ww27d69O922N954Q7ly5dKff/5p1//OnTtVu3Ztubu7Kzg4WHPmzEn32sxeK92uIUOGqHHjxlq2bJkOHz5sjmd0PTBjxgxVqFBBefLkUf78+VWjRg0tWbJE0r/XKoMGDZIkBQcHm+f3qZ9rRtdwqefnVsvf/P3332rXrp08PT1VsGBB9e3bV1evXjW3Hzt2zO4aIq20+7xVbxldv/z22296+umnVaBAAeXJk0ePPPKIVq1aZVdzu9fFAO5d3IkO4H/y5ptvysnJSa+88oouXLigCRMmqGPHjoqJiTFr3n//fb344ouqXbu2+vXrp99++01PPfWUChQooICAALMuJSVFTz31lH744Qf17NlT5cqV0549ezRlyhQdPnxYK1assJt7/fr1+uSTTxQZGalChQqpcuXKmj17tnr16qVWrVqpdevWkv77a5Rr165V06ZNVbx4cUVFRenKlSuaMWOG6tSpo127dqULbNu1a6fg4GCNGzdOu3bt0nvvvScfHx+NHz/erBk7dqyGDx+udu3a6YUXXtBff/2lGTNmqF69etq9e/dt/QrjjZ5//nm99tprWrNmjXr06JFhzb59+/TEE0+oUqVKGj16tFxdXfXLL79o8+bNkqRy5cpp9OjRGjFihHr27Km6detKkmrXrm3u459//lHTpk3Vvn17Pffcc/L19b1pX2PHjpXNZtOrr76qM2fOaOrUqQoLC1NsbKx5x3xmZKa3tAzD0FNPPaUNGzaoe/fuqlKlir799lsNGjRIf/75p6ZMmWJX/8MPP+jzzz/Xyy+/rHz58mn69Olq06aNjh8/roIFC2a6TwAAgPtRYGCgtm7dqr1796pixYo3rc3sOe+yZct0+fJl9erVSwULFtS2bds0Y8YM/fHHH1q2bJm5vzZt2mjfvn3q3bu3goKCdObMGUVHR+v48ePmOXlUVJRGjRqlsLAw9erVS4cOHdLs2bO1fft2bd682e63Fs+dO6cmTZqodevWateunT799FO9+uqrCgkJUdOmTSVJ8fHxeu+999ShQwf16NFDFy9e1Pvvv6/w8HBt27bttpY9vJW2bdsqIiJCixcvVtWqVe22LV68WA0aNFDRokXt+m/WrJnatWunDh066JNPPlGvXr3k4uKibt26Sbr9a6Xb9fzzz2vNmjWKjo5W6dKlM6x599131adPH7Vt29YMs3/++WfFxMTo2WefVevWrXX48GF99NFHmjJligoVKiRJ5o1OUvpruBuvwW7Url07BQUFady4cfrxxx81ffp0nTt3TgsXLryt95eZ3tI6ffq0ateurcuXL6tPnz4qWLCgFixYoKeeekqffvqpWrVqZVefmetiAPc4AwAMwxg5cqQhyfjrr78y3F6hQgWjfv365vMNGzYYkoxy5coZiYmJ5vi0adMMScaePXsMwzCMpKQkw8fHx6hSpYpd3dy5cw1Jdvv88MMPDScnJ+P777+3m3vOnDmGJGPz5s3mmCTDycnJ2Ldvn13tX3/9ZUgyRo4cme49VKlSxfDx8TH++ecfc+ynn34ynJycjE6dOqU7Ft26dbN7fatWrYyCBQuaz48dO2bkypXLGDt2rF3dnj17DGdn53TjN5o3b54h/R979x0eVZm4ffyeTHonIZAECL0LgqCIKE0UlEWwLLq6Kq69vuzaf+vqquuKddeyiG0BlVVBVGxgDSKCVGnSewghIaT3zMx5/4hEAwQJZPLMnPl+risX5szMmXsCTs655znPI2vZsmX13icuLs7q27fvYdkO+te//nXUvzfLsqxly5ZZkqypU6cedtuQIUMsSdaUKVOOeNuR/s5btWplFRUV1W6fOXOmJcl67rnnare1bdvWuvrqq39zn0fLdvXVV1tt27at/f7DDz+0JFn/+Mc/6tzvkksusRwOh7V169babZKs0NDQOttWr15tSbJeeOGFw54LAAAg0HzxxReW0+m0nE6nNXDgQOuee+6xPv/8c6uqqqrO/RpyzFtWVnbY8zz++OOWw+Gwdu3aZVmWZeXn51uSrKeeeqrebDk5OVZoaKh17rnnWm63u3b7iy++aEmy/vvf/9ZuO3g8+8Ybb9Ruq6ystJKTk62LL764dpvL5apzPnIwS8uWLQ877q/vfKI+s2bNsiRZ6enptdv+8Ic/WKmpqXXyr1y58rBj34P5n3nmmTr5D567HPz7aMi50pFcffXVVlRUVL23//jjj5Yk689//nOdbL8+dh87dqzVs2fPoz7PU089ZUmyduzYcdht9Z3DHbzt1z/zg+c9F1xwQZ373XLLLZYka/Xq1ZZlWdaOHTvqPZ84dJ9Hy3bo+cvEiRMtSXV+3sXFxVb79u2tdu3a1f69Hut5MQD/x3QuAE7INddcU2euvIOjibdv3y5JWr58uXJycnTTTTfVud+ECRMUFxdXZ1+zZs1S9+7d1a1bN+Xm5tZ+DR8+XJIOu9RyyJAh6tGjxzHlzMrK0qpVqzRhwgQlJCTUbu/du7fOOeccffbZZ4c95qabbqrz/VlnnaUDBw6oqKhIkvT+++/L4/Fo/PjxdfImJyerc+fOjXJpaHR0tIqLi+u9/eConzlz5hz3IpxhYWG65pprjvn+V111lWJiYmq/v+SSS5SSknLEn2Fj+uyzz+R0OnXHHXfU2X7nnXfKsizNnTu3zvYRI0aoY8eOtd/37t1bsbGxtf82AQAAAtk555yjxYsX64ILLtDq1av15JNPauTIkWrVqpU++uij2vs15Jj311cllpaWKjc3V2eccYYsy6qd2iQiIkKhoaGaP3++8vPzj5jtq6++UlVVlSZOnFhnscfrr79esbGxh02pER0dXWeu79DQUJ122ml1jvucTmft+YjH41FeXp5cLpf69++vlStXHs+P8Kiuuuoq7d27t87PZ8aMGYqIiNDFF19c577BwcG68cYb6+S/8cYblZOToxUrVkhq+LlSQ0VHR0vSb5577NmzR8uWLTvu52nIOZwk3XrrrXW+P7jgbVOce5x22mk688wza7dFR0frhhtu0M6dO7V+/fo69/+t82IA/o8SHcAxO3QubklKS0ur832zZs0kqfaAeNeuXZKkzp0717lfSEiIOnToUGfbli1b9NNPPykpKanO18HLCQ9d4Kh9+/bHnP1gjq5dux52W/fu3ZWbm6vS0tIGvbYtW7bIsix17tz5sMwbNmxolAWZSkpK6hTWh7r00ks1aNAgXXfddWrZsqUuu+wyzZw5s0GFeqtWrRq0aNChf5cOh0OdOnU6bA7LxrZr1y6lpqYe9vPo3r177e2/dujfn1Tzd1jfyRoAAECgOfXUU/X+++8rPz9fS5cu1f3336/i4mJdcskltSVhQ455d+/eXTtoJTo6WklJSRoyZIgkqbCwUFLNAI4nnnhCc+fOVcuWLTV48GA9+eST2rdvX+1+6jt2Dw0NVYcOHQ477mvduvVh5ypHOu6bPn26evfurfDwcCUmJiopKUmffvppbbbGdM455yglJUUzZsyQVFPcv/322xo7duxhx7OpqamKioqqs+3gOdDBY+yGnis1VElJiSQd9dzj3nvvVXR0tE477TR17txZt956a+00kseqIedw0uHnHh07dlRQUFCTnHvUd+548PZf+61zRwD+jznRAUhS7Wrohy76c1BZWdkRV0x3Op1HvL91yEKPx8Lj8ahXr1569tlnj3j7r+dPl9Sg+bePx2+9No/HI4fDoblz5x7xvgdHcxyvPXv2qLCwUJ06dar3PhEREVqwYIHS09P16aefat68eXr33Xc1fPhwffHFF/W+hkP30diO9IGLVLMo6bFkagyN+W8TAADAzkJDQ3Xqqafq1FNPVZcuXXTNNddo1qxZeuihh475mNftduucc85RXl6e7r33XnXr1k1RUVHKzMzUhAkT6gzymDhxosaMGaMPP/xQn3/+uf72t7/p8ccf1zfffHPYHOLH4liO+9566y1NmDBB48aN0913360WLVrI6XTq8ccf17Zt2xr8nMeS6fLLL9err76qyZMn6/vvv9fevXvrjJhviIaeKzXUunXrJOmo5x7du3fXpk2b9Mknn2jevHmaPXu2Jk+erAcffFAPP/zwMT3PiZ57HHqecbTzjqbEuQdgf5ToACTVLCwkSZs2bTrsAKysrEwZGRk699xzj3u/W7Zsqb3UUJKqq6u1Y8cOnXzyybXbOnbsqNWrV+vss8+u92Dot9T3uF+/vkNt3LhRzZs3P2z0x2/p2LGjLMtS+/bt611850S8+eabkqSRI0ce9X5BQUE6++yzdfbZZ+vZZ5/VP//5T/31r39Venq6RowYcdw/y/ps2bKlzveWZWnr1q21C7hKNSMvCgoKDnvsrl276lyB0JBsbdu21VdffaXi4uI6I2Q2btxYezsAAABOTP/+/SXVTIcoHfsx79q1a7V582ZNnz5dV111Ve32L7/88oj379ixo+68807deeed2rJli/r06aNnnnlGb731Vp1j918fO1ZVVWnHjh0aMWJEg1/Xe++9pw4dOuj999+vcwz60EMPNXhfx+qqq67SM888o48//lhz585VUlLSEY/t9+7dq9LS0jrnI5s3b5ak2oU3G+Nc6WjefPNNORwOnXPOOUe9X1RUlC699FJdeumlqqqq0kUXXaTHHntM999/v8LDw71y7vHr0etbt26Vx+Op/bkcHPF96LnHoSPFpYafe9R37njwdgCBhelcAEiSzj77bIWGhuqll146bCqQV155RS6Xq3Zl+4bo37+/kpKSNGXKFFVVVdVunzZt2mEHOuPHj1dmZqZeffXVw/ZTXl5+2HQrRxIZGSnp8IOolJQU9enTR9OnT69z27p16/TFF1/o/PPPP/YX9bOLLrpITqdTDz/88GEjDCzL0oEDBxq8z4O++eYbPfroo2rfvr2uuOKKeu+Xl5d32LY+ffpIkiorKyWp9mD8SKX28XjjjTfqzJX43nvvKSsrq86/j44dO+qHH36o83f+ySefKCMjo86+GpLt/PPPl9vt1osvvlhn+7/+9S85HI7j+vcJAAAQqNLT0484SvbgXNMHp7I41mPegyNxf30fy7L03HPP1XlMWVmZKioq6mzr2LGjYmJiao9fR4wYodDQUD3//PN19vf666+rsLBQo0ePbvDrPVK+JUuWaPHixQ3e17Hq3bu3evfurddee02zZ8/WZZddpuDgw8cyulwuvfzyy7XfV1VV6eWXX1ZSUpL69esnqXHOleozadIkffHFF7r00ksPmz7l1w49vwkNDVWPHj1kWZaqq6slNf65x3/+858637/wwguSVHvsHxsbq+bNm2vBggV17jd58uTD9tXQc4+lS5fW+fdRWlqqV155Re3atWvQvO4A7IGR6AAkSS1atNCDDz6oBx54QIMHD9YFF1ygyMhILVq0SG+//bbOPfdcjRkzpsH7DQkJ0T/+8Q/deOONGj58uC699FLt2LFDU6dOPWxO9CuvvFIzZ87UTTfdpPT0dA0aNEhut1sbN27UzJkz9fnnn9eOjKlPRESEevTooXfffVddunRRQkKCTjrpJJ100kl66qmndN5552ngwIG69tprVV5erhdeeEFxcXH6+9//3uDX1rFjR/3jH//Q/fffr507d2rcuHGKiYnRjh079MEHH+iGG27QXXfd9Zv7mTt3rjZu3CiXy6Xs7Gx98803+vLLL9W2bVt99NFHR5xG56BHHnlECxYs0OjRo9W2bVvl5ORo8uTJat26de0iOB07dlR8fLymTJmimJgYRUVFacCAAQ2ej/CghIQEnXnmmbrmmmuUnZ2tf//73+rUqZOuv/762vtcd911eu+99zRq1CiNHz9e27Zt01tvvVVnoc+GZhszZoyGDRumv/71r9q5c6dOPvlkffHFF5ozZ44mTpx42L4BAABQv9tvv11lZWW68MIL1a1bN1VVVWnRokV699131a5du9qF54/1mLdbt27q2LGj7rrrLmVmZio2NlazZ88+bE7ozZs36+yzz9b48ePVo0cPBQcH64MPPlB2drYuu+wySVJSUpLuv/9+Pfzwwxo1apQuuOACbdq0SZMnT9app556XFOi/O53v9P777+vCy+8UKNHj9aOHTs0ZcoU9ejRo3Y+cG+46qqras8J6sudmpqqJ554Qjt37lSXLl307rvvatWqVXrllVcUEhIiqXHOlVwul9566y1JUkVFhXbt2qWPPvpIa9as0bBhw/TKK68c9fHnnnuukpOTNWjQILVs2VIbNmzQiy++qNGjR9deKXqw9P/rX/+qyy67TCEhIRozZkyDr/o9aMeOHbrgggs0atQoLV68WG+99ZYuv/zyOlc0X3fddZo0aZKuu+469e/fXwsWLKgdyf9rDcl233336e2339Z5552nO+64QwkJCZo+fbp27Nih2bNn11nwFkCAsADgV9566y3r9NNPt6KioqywsDCrW7du1sMPP2xVVFTUuV96erolyZo1a1ad7Tt27LAkWVOnTq2zffLkyVb79u2tsLAwq3///taCBQusIUOGWEOGDKlzv6qqKuuJJ56wevbsaYWFhVnNmjWz+vXrZz388MNWYWFh7f0kWbfeeusRX8OiRYusfv36WaGhoZYk66GHHqq97auvvrIGDRpkRUREWLGxsdaYMWOs9evX13n8Qw89ZEmy9u/fX2f71KlTLUnWjh076myfPXu2deaZZ1pRUVFWVFSU1a1bN+vWW2+1Nm3adMR8h+7v4FdoaKiVnJxsnXPOOdZzzz1nFRUVHfaYg9kO+vrrr62xY8daqampVmhoqJWammr94Q9/sDZv3lzncXPmzLF69OhhBQcH1/n7GTJkiNWzZ88j5jv07+fg3/nbb79t3X///VaLFi2siIgIa/To0dauXbsOe/wzzzxjtWrVygoLC7MGDRpkLV++/Ih/5/Vlu/rqq622bdvWuW9xcbH15z//2UpNTbVCQkKszp07W0899ZTl8Xjq3K++fx9t27a1rr766iO+XgAAgEAyd+5c609/+pPVrVs3Kzo62goNDbU6depk3X777VZ2dvZh9z+WY97169dbI0aMsKKjo63mzZtb119/vbV69eo6x3i5ubnWrbfeanXr1s2Kioqy4uLirAEDBlgzZ8487DlffPFFq1u3blZISIjVsmVL6+abb7by8/Pr3Ke+49lDjyU9Ho/1z3/+02rbtq0VFhZm9e3b1/rkk0+OeMx56DnEb5k1a5YlyUpPTz/stqysLMvpdFpdunQ54mMP5l++fLk1cOBAKzw83Grbtq314osvHnbfYz1XOpKrr766zrlHZGSk1a5dO+viiy+23nvvPcvtdh8x26+P3V9++WVr8ODBVmJiohUWFmZ17NjRuvvuuw977kcffdRq1aqVFRQUVOf86WjncIf+zA+e96xfv9665JJLrJiYGKtZs2bWbbfdZpWXl9d5bFlZmXXttddacXFxVkxMjDV+/HgrJyfniH+P9WU70nnCtm3brEsuucSKj4+3wsPDrdNOO8365JNP6tynoefFAPyXw7JY5QAAAAAAAKCx5ebmKiUlRQ8++KD+9re/HXb70KFDlZubW7uwJwDAN3H9CQAAAAAAgBdMmzZNbrdbV155pekoAIATwJzoAAAAAAAAjeibb77R+vXr9dhjj2ncuHFq166d6UgAgBNAiQ4AAAAAANCIHnnkES1atEiDBg3SCy+8YDoOAOAEMSc6AAAAAAAAAAD1YE50AAAAAAAAAADqQYkOAAAAAAAAAEA9KNEBAAAAAAAAAKgHJToAAAAAAAAAAPWgRAcAAAAAAAAAoB6U6AAAAAAAAAAA1IMSHQAAAAAAAACAelCiAwAAAAAAAABQD0p0AAAAAAAAAADqQYkOAAAAAAAAAEA9KNEBAAAAAAAAAKgHJToAAAAAAAAAAPWgRAcAAAAAAAAAoB6U6AAAAAAAAAAA1IMSHQAAAAAAAACAelCiAwAAAAAAAABQD0p0AAAAAAAAAADqQYkOAAAAAAAAAEA9KNEBAAAAAAAAAKgHJToAAAAAAAAAAPWgRAcAAAAAAAAAoB6U6AAAAAAAAAAA1IMSHQBw3ObPny+Hw6GCggLTUQAAAAAAALyCEh0AfMCECRPkcDg0adKkOts//PBDORyORnuenTt3yuFwaNWqVY22TwAAAAAAADujRAcAHxEeHq4nnnhC+fn5pqOoqqrKdAQAAAAAAACfQIkOAD5ixIgRSk5O1uOPP17vfRYuXKizzjpLERERatOmje644w6VlpbW3u5wOPThhx/WeUx8fLymTZsmSWrfvr0kqW/fvnI4HBo6dKikmpHw48aN02OPPabU1FR17dpVkvTmm2+qf//+iomJUXJysi6//HLl5OQ03osGAAAAAADwcZToAOAjnE6n/vnPf+qFF17Qnj17Drt927ZtGjVqlC6++GKtWbNG7777rhYuXKjbbrvtmJ9j6dKlkqSvvvpKWVlZev/992tv+/rrr7Vp0yZ9+eWX+uSTTyRJ1dXVevTRR7V69Wp9+OGH2rlzpyZMmHBiLxQAAAAAAMCPBJsOAAD4xYUXXqg+ffrooYce0uuvv17ntscff1xXXHGFJk6cKEnq3Lmznn/+eQ0ZMkQvvfSSwsPDf3P/SUlJkqTExEQlJyfXuS0qKkqvvfaaQkNDa7f96U9/qv3vDh066Pnnn9epp56qkpISRUdHH+/LBAAAAAAA8BuMRAcAH/PEE09o+vTp2rBhQ53tq1ev1rRp0xQdHV37NXLkSHk8Hu3YseOEn7dXr151CnRJWrFihcaMGaO0tDTFxMRoyJAhkqTdu3ef8PMBAAAAAAD4A0p0APAxgwcP1siRI3X//ffX2V5SUqIbb7xRq1atqv1avXq1tmzZoo4dO0qqmRPdsqw6j6uurj6m542KiqrzfWlpqUaOHKnY2FjNmDFDy5Yt0wcffCCJhUcBAAAAAEDgYDoXAPBBkyZNUp8+fWoX+JSkU045RevXr1enTp3qfVxSUpKysrJqv9+yZYvKyspqvz840tztdv9mho0bN+rAgQOaNGmS2rRpI0lavnx5g18LAAAAAACAP2MkOgD4oF69eumKK67Q888/X7vt3nvv1aJFi3Tbbbdp1apV2rJli+bMmVNnYdHhw4frxRdf1I8//qjly5frpptuUkhISO3tLVq0UEREhObNm6fs7GwVFhbWmyEtLU2hoaF64YUXtH37dn300Ud69NFHvfOCAQAAAAAAfBQlOgD4qEceeUQej6f2+969e+vbb7/V5s2bddZZZ6lv37568MEHlZqaWnufZ555Rm3atNFZZ52lyy+/XHfddZciIyNrbw8ODtbzzz+vl19+WampqRo7dmy9z5+UlKRp06Zp1qxZ6tGjhyZNmqSnn37aOy8WAAAARrVr107//ve/G/SYV155RW3atFFQUJD+/e9/6+9//7v69OnjlXy/Nm3aNMXHx3v9eQAAOMhhHTp5LgAAAAAA8DlDhw5Vnz59Diu7p02bpokTJ6qgoOC4992uXTtNnDhREydOPKb7FxUVqXnz5nr22Wd18cUXKy4uTh6PR5WVlUpMTDzuHMeiMV4vAAANwZzoAAAAAACgQXbv3q3q6mqNHj1aKSkptdujo6MNpgIAwDuYzgUAAAAAAJuYMGGCxo0bp6efflopKSlKTEzUrbfequrq6tr75OTkaMyYMYqIiFD79u01Y8aMw/ZTUFCg6667TklJSYqNjdXw4cO1evVqSTUjwXv16iVJ6tChgxwOh3bu3HnYdC7HkqWyslJ33XWXWrVqpaioKA0YMEDz58+vk2XatGlKS0tTZGSkLrzwQh04cKARf2IAAPw2RqIDAAAAAGAj6enpSklJUXp6urZu3apLL71Uffr00fXXXy+pptzeu3ev0tPTFRISojvuuEM5OTl19vH73/9eERERmjt3ruLi4vTyyy/r7LPP1ubNm3XppZeqTZs2GjFihJYuXao2bdooKSnpuLLcdtttWr9+vd555x2lpqbqgw8+0KhRo7R27Vp17txZS5Ys0bXXXqvHH39c48aN07x58/TQQw959wcIAMAhKNEBAAAAALCRZs2a6cUXX5TT6VS3bt00evRoff3117r++uu1efNmzZ07V0uXLtWpp54qSXr99dfVvXv32scvXLhQS5cuVU5OjsLCwiRJTz/9tD788EO99957uuGGG2rnPU9KSlJycvJxZdm9e7emTp2q3bt3KzU1VZJ01113ad68eZo6dar++c9/6rnnntOoUaN0zz33SJK6dOmiRYsWad68eV752QEAcCSU6AAAAAAA2EjPnj3ldDprv09JSdHatWslSRs2bFBwcLD69etXe3u3bt0UHx9f+/3q1atVUlJy2AKh5eXl2rZtW6NlWbt2rdxut7p06VLnMb9enHTDhg268MIL69w+cOBASnQAQJOiRAcAAAAAwA/ExsaqsLDwsO0FBQWKi4ur/T4kJKTO7Q6HQx6P55ifp6SkRCkpKYfNTS6pTtl+LI6WpaSkRE6nUytWrKhTtEssUAoA8C2U6AAAAAAA+IGuXbvqiy++OGz7ypUrDxvNXZ9u3brJ5XJpxYoVtdO5bNq0SQUFBbX3OeWUU7Rv3z4FBwerXbt2jRH9iPr27Su3262cnBydddZZR7xP9+7dtWTJkjrbfvjhB69lAgDgSIJMBwAAAAAAAL/t5ptv1ubNm3XHHXdozZo12rRpk5599lm9/fbbuvPOO49pH127dtWoUaN04403asmSJVqxYoWuu+46RURE1N5nxIgRGjhwoMaNG6cvvvhCO3fu1KJFi/TXv/5Vy5cvb7TX06VLF11xxRW66qqr9P7772vHjh1aunSpHn/8cX366aeSpDvuuEPz5s3T008/rS1btujFF19kKhcAQJOjRAcAAAAAwA906NBBCxYs0MaNGzVixAgNGDBAM2fO1KxZszRq1Khj3s/UqVOVmpqqIUOG6KKLLtINN9ygFi1a1N7ucDj02WefafDgwbrmmmvUpUsXXXbZZdq1a5datmzZqK9p6tSpuuqqq3TnnXeqa9euGjdunJYtW6a0tDRJ0umnn65XX31Vzz33nE4++WR98cUXeuCBBxo1AwAAv8VhWZZlOgQAAAAAAAAAAL6IkegAAAAAAAAAANSDEh0AAAAAAAAAgHoEmw4AAHbncntUWulWSZVLldVueSzJsix5fp5My+GQghw1c08GBzkUEepUVGiwIkOdcjgcZsMDAAAAaDIut0cuj6Vqt0cud82f1R5LLrdH1W5LLo9HliWFBQcpItSpiBCnwn/+AgB4DyU6ADRApcutnKJK5RRXKLuoUjlFFcourlROUaVySypVUulSaaVLJZUulVW5VVLpUpXLc1zPFeSQIn8u06PDghUVFqyoMKfiIkLUIiZcLWPD1CImXC1+/rNlbJgSokIp3gEAAAAf4PFYyiqq0L7Cch0oqVJ+WZXySquVX1b1q+9/+bOk0qXjXbUuyCGFh/xSqtcMzHEqMTpMLWJqvpJiw2v/u8XP/x3iZIICADgWLCwKAIcoLK/W9v0l2pFbqh25pdqeW6qduaXak1+uwvJq0/GOKsTpUIuYcKUlRKp9UpQ6NI9Sh6QotW8erTbNIhTMQTIAAADQaKpcHmXkl2n3gTLtOlCqnQfKtDuv5r8z8suPe0BNU3A4pGaRoWoRE6Y2CZHq0DxK7X/+6pAUraSYMNMRAcBnUKIDCFgV1W6tzyrSusxC/ZRZpG0/F+cHSqtMR/OKEKdDbZpFqn3zKHVJjlGvVnHq1SpObRIiTUcDAAAAfN7egnKtzSzUT5mFWptZqM3ZJcoqLK+dptFu4iJC1KVltDq3jFGXFtHqkhyjnqlxiosIMR0NAJocJTqAgPDrwnztnpqD3q05JXLZ9Yi3AZpFhuikVnE66edSnWIdAAAAgS6zoFxr9xTWnD9kFuqnvYXKLbHnYJuGcDikDs2j1DetmU5Ja6a+afHq2jJGQUFMKQnA3ijRAdhSaaVLS3fm6YftB/TDtgP6aW8RhXkDJESFakD7BJ3eIVEDOyaqS8sY05EAAAAAr9m0r1jfb83Vom0HtHJ3vvJsenWqN0SHBatXqzid0jZefdvUFOuJ0UwFA8BeKNEB2EJZlUvLdubrh+0HtHjbAa3LLKQ0b0TNo0M1oH2iTu9QU6x3plQHAACAH8vIK6stzRdtO6DckkrTkWyla8sYDemapKFdktS/XYJCg1mbCYB/o0QH4Ld25pbqy/XZ+mpDtlbuzle1m7ezppIUE6ZhXZN0dveWGtw5SRGhTtORAAAAgHoVlFVpwZZcLdqaq++35Sojr9x0pIARFerUwI6JGtIlSUO7tmDqSAB+iRIdgN/weCyt2J2vrzZk66v12dq2v9R0JEgKCw7SoE7NNaJ7S43o3kItYsNNRwIAAACUWVCuL37apy9+ytaynXlcqeojOjSP0uAuSRrWrYXO6JioECej1AH4Pkp0AD6t2u3Rt5v2a+66fZq/KUcHmJvQpzkcUu9WcRrRvaXGnJyqds2jTEcCAABAANl1oFSfrMnS3HVZWpdZZDoOfkN8ZIjOOylZY3qn6vQOiSxQCsBnUaID8EnLd+bpw1WZ+nRNlvLLqk3HwXHq0yZe4/qkaszJqSwuBAAAAK/IyCvTx2v26tM1WfppL8W5v2oRE6bRvVM05uRUnZLWzHQcAKiDEh2Az9iaU6I5qzI1Z9Ve7c4rMx0HjSg4yKGzOjfXuL6tdG6PZOZQBwAAwAmpqHZr7rosvb00Q0t35JmOg0bWJiFCY3qn6oI+qeqWHGs6DgBQogMwq7iiWh/8mKlZy/dobWah6ThoAlGhTo3smaw/DEjTqe0STMcBAACAH1m/t0jvLNutD3/MVFGFy3QcNIFuyTH64+ltdWHfVooKCzYdB0CAokQHYMSGrCK9+cMuzfkxU6VVbtNxYAgHxAAAAPgtJZUuzVmVqXeWZjDwJoDFhAXrwlNa6crT26pzyxjTcQAEGEp0AE2myuXR3HVZenPxLi3flW86DnwIB8QAAAA41OqMAr35wy59tjZLZQy8wa8MaJ+gKwe21cieyQpxBpmOAyAAUKID8Lrsogq9sXin3l2WodySKtNx4ONO75Cgqwe208ieyQoKcpiOAwAAgCaWvjFHU77dpiXMdY7f0CImTJed2kaXD2ir5Lhw03EA2BglOgCv2ZlbqpcXbNPsFZmqcntMx4Gf6dA8SjcO6aAL+7ZWaDCjSwAAAOys2u3RR6v26tXvtmvjvmLTceBngoMcuqBPqm4d1kkdk6JNxwFgQ5ToABrdT3sLNXn+Ns1dmyUP7zA4Qcmx4brurPa6fECaIkOZNx0AAMBOSitdenvpbv134Q7tLawwHQd+Lsghnd8rRbcN76RuybGm4wCwEUp0AI1m6Y48TZ6/VfM37TcdBTbULDJEV5/RThPOaKf4yFDTcQAAAHACcksqNfX7HXrrh90qLK82HQc243BII7q31O3DO6l363jTcQDYACU6gBO2dEeenvp8o5btZLFQeF9UqFNXDmynm4d2VFxEiOk4AAAAaICiimpNmb9NU7/fqfJqFguF9w3ukqQ7hndS/3YJpqMA8GOU6ACO24asIj05b6PSGXkOA+IiQnTTkI66ZlA7hYc4TccBAADAUVRUuzV90U699O02FZQx8hxN7/QOCbp7ZDf1a9vMdBQAfogSHUCDZeSV6ZkvNumj1XuZ8xzGJceG646zO2t8/9YKdrIAKQAAgC9xeyy9tyJD//5qi7KY8xw+YHTvFN03qpvaJESajgLAj1CiAzhmuSWVeuHrLXp7aYaq3B7TcYA6OiRF6a5zu+r8XimmowAAAEDSvHX79PQXm7Q1p8R0FKCO0OAgTTijnW4b3kmx4UwRCeC3UaID+E2VLrde+26HJqdvVWkV8xbCt53cJl5/H9NDfdO4TBMAAMCEJdsP6PG5G7Uqo8B0FOCoEqJC9f/O7qwrBqRxVSuAo6JEB3BU6Zty9PBHP2nngTLTUYBj5nBI4/u10b3ndVNCVKjpOAAAAAEht6RSj326QR/8mGk6CtAgHZKidP953XVOj5amowDwUZToAI4oI69Mj3yyXl+uzzYdBThucREhuuvcLrpiQFsFBTlMxwEAALAlj8fSjKW79dS8jSqqcJmOAxy3gR0S9ei4nurUIsZ0FAA+hhIdQB0V1W69/O12vfTtVlVUM+857KFnaqweGXuS+rVlihcAAIDGtC6zUH/9cJ1WM3ULbCI0OEi3Du2km4d2VGgwU7wAqEGJDqDW/E05euijn7SLqVtgQw6HdPEprfXX87urGVO8AAAAnJDiimo988VmvfnDLrk91Aqwny4tozXp4t46hbWWAIgSHYCkoopqPfLxer23Yo/pKIDXNY8O0z/GnaRRJyWbjgIAAOCXPlq9V//4ZL1yiitNRwG8KsghXXl6W909qpuiw4JNxwFgECU6EODSN+Xo/tlrta+ownQUoEmNOTlVj1zQk1HpAAAAx2h/caXunb1G32zMMR0FaFKpceH6x4UnaXg3Fh4FAhUlOhCgGH0OMCodAADgWH3+0z7d//5a5ZVWmY4CGPO73in6+wU91Tw6zHQUAE2MEh0IQIw+B+piVDoAAMCRlVS69PBHP2kWg28ASVJCVKievLi3RvRgVDoQSCjRgQBSXuXWwx//pHeWZZiOAvic5tFheur3vTWsawvTUQAAAHzCsp15+svMVcrIKzcdBfA5VwxI099+10PhIU7TUQA0AUp0IEBs2les2/63UltySkxHAXyWwyHdcFYH3T2yq4KdQabjAAAAGFHt9ujZLzfr5W+3yUNjANSrU4toPXdZH/VMjTMdBYCXUaIDAeB/S3brkU9+UkW1x3QUwC/0TYvXC3/oq9bNIk1HAQAAaFJbsov1/95ZpfVZRaajAH4hNDhI/3deN00Y1N50FABeRIkO2FhxRbXuf3+tPlmTZToK4Hdiw4P15CW9NeqkFNNRAAAAmsScVZm6b/ZalVe7TUcB/M7Ini315MUnKy4yxHQUAF5AiQ7Y1No9hbrt7ZXadaDMdBTAr101sK3+Orq7woKZ6xAAANiTy+3RY59t0NTvd5qOAvi1VvEReuHyvjolrZnpKAAaGSU6YENvLt6pRz/ZoCo307cAjaFnaqym/LGf2iQwvQsAALCXnOIK3TbjRy3dmWc6CmALIU6H/n5BT10xoK3pKAAaESU6YCPVbo8enLNOby/NMB0FsJ2EqFBNvuIUnd4h0XQUAACARrFiV75umbFC2UWVpqMAtnPl6W310JgeCnYGmY4CoBFQogM2caCkUje/tZIRJIAXhTgdenBMT115OqNKAACAf3tj8U49+sl6VbupBABvGdghUZOvOEXNokJNRwFwgijRARtYv7dI17+xXJkF5aajAAHhigFp+vsFPRXCqBIAAOBnKqrd+usH6zR75R7TUYCAkJYQqdeu7q8uLWNMRwFwAijRAT/32dos3TVrtcqq3KajAAFlQPsEvfTHfkpgVAkAAPAT+4srde30ZVqzp9B0FCCgRIcF61+X9tE5PVqajgLgOFGiA37Ksiz9+6stev6bLeL/YsCM1s0i9OpV/dU9JdZ0FAAAgKPavr9EV09dqow8rl4FTAhySHee21W3DutkOgqA40CJDvghl9uje95bo/d/zDQdBQh4MWHBeuWq/hrYkQVHAQCAb1q5O1/XTV+uvNIq01GAgDe2T6qeuuRkhQYzNSTgTyjRAT9TXuXWzTNWaP6m/aajAPhZaHCQ/n1pH53fK8V0FAAAgDq+XJ+t299eqYpqj+koAH52VufmevnKfooMDTYdBcAxokQH/Eh+aZWumbZMqzIKTEcBcIggh/TwBT115cB2pqMAAABIkmYs2aUH5/wkt4fTfsDX9E2L19QJpyo+kjWWAH9AiQ74icyCcl31+hJt219qOgqAo7hjeCf95dyupmMAAIAA9/Tnm/Ri+lbTMQAcRZeW0Xrz2gFqGRtuOgqA30CJDviBTfuKdfV/l2pfUYXpKACOwR9OS9M/xp0kZ5DDdBQAABBgXG6P7p29VrNX7jEdBcAxaN0sQm9dO0DtmkeZjgLgKCjRAR+3Yleerpm6TEUVLtNRADTAyJ4t9cIfTmHBIAAA0GSqXB7dMmOlvtqQbToKgAZoHh2m6X86VT1T40xHAVAPSnTAhy3ZfkB/mrZMpVVu01EAHIdhXZM05cp+Cgt2mo4CAABsrtLl1s1vrdQ3G3NMRwFwHGLCg/X61afqtPYJpqMAOAJKdMBHLdqaq2unL1d5NQU64M/O6txcr17VX+EhFOkAAMA7KqrduuHNFVqweb/pKABOQHhIkF65sr8Gd0kyHQXAISjRAR/0/dZcXTt9mSqqPaajAGgEgzol6vWrT6VIBwAAja6i2q1rpy/T91sPmI4CoBGEhwRp2jWn6fQOiaajAPgVJmoFfMyibRTogN18v/WArn9juSq4sgQAADSiimq3rpu+nAIdsJGKao+unbZMK3fnm44C4Fco0QEfsmT7AV07bTkFOmBD323J1Y1vrlCliyIdAACcuEqXWze+uUILt+aajgKgkZVWuXX1f5dqXWah6SgAfkaJDviIFbvy9Kdpy5gDHbCxbzfv181vrVS1mw/KAADA8atyeXTLWyv1LXOgA7ZVXOHSla8v0ebsYtNRAIgSHfAJm/YV60/Tlqu0igIdsLtvNubo7lmrxZIkAADgeHg8lia++6O+3phjOgoAL8svq9YVry3R9v0lpqMAAY8SHTAss6BcV/93qQrLq01HAdBEPly1V//4dIPpGAAAwA898sl6fbZ2n+kYAJrI/uJKXfHaEmXklZmOAgQ0SnTAoPzSKl31+hLtK6owHQVAE3t94Q69/O020zEAAIAfmfLtNk1btNN0DABNLKuwQpe/9oP2FdIdAKZQogOGlFe59afpy7Rtf6npKAAMmTRvo2av2GM6BgAA8ANzVmXqiXkbTccAYEhGXrmumbZMpZUu01GAgESJDhjgcnt0y4wV+nF3gekoAAyyLOne2WuUzpymAADgKBZtzdXds9aIJVWAwLYhq0i3v/2j3B7eDICmRokONDHLsnTP7DVK37TfdBQAPsDlsXTLjJX6cXe+6SgAAMAHbcgq0o1vrlCV22M6CgAf8M3GHD36yXrTMYCAQ4kONLHnvt6i91dmmo4BwIeUV7t17fTl2pPPYkEAAOAXmQXlmjB1qYqZvgHAr0xbtFPTWR8BaFKU6EATmrcuS899vcV0DAA+KK+0Ste/sUJlVZwkAwAAqbCsWhP+u1TZRZWmowDwQY98sp5pIYEmRIkONJENWUX6y8zVzGMIoF4bsor0l3dXy+KNAgCAgObxWLr9nR+1JafEdBQAPsrtsXT72z9qQ1aR6ShAQHBYnKkDXnegpFIXvPi9MgvKTUfBCShYOEOF379dZ1twQmu1un6KJMlyVSnvm9dVtmGBLHe1ItqfooRzb5Yzqlm9+7QsS4ULZ6hk9efyVJYqrFV3JZx7i0ISWv28z2odmPe8yrb8IGdUMyWce4si2vWpfXzhktlyF+1Xwjk3Nf4LhjH/7+zO+vM5XUzHAAAAhjz1+Ub9J32b6RgA/EBqXLg+vHWQWsSGm44C2Boj0QEvq3Z7dPOMlRToNhHSPE2tb32z9iv5iidqb8v7+lWVb12q5uPuU8vLJ8lVckD7P/jnUfdXtGS2ilZ8rISRtyr5ymfkCAlXzswHZbmqJEnFq+epat9WJf/xaUWfPEq5Hz9VO0q5umCfSlZ/rvjBV3nvBcOI57/ZonnrskzHAAAABnz+0z5Nnk+BDuDY7C2s0HVvLFdFtdt0FMDWKNEBL3voo5+0dEee6RhoLEFOOaOb/fIVGSdJ8lSWqmTNl2o2/FpFtD1ZYcmd1Pz8iarM3KDKzI1H3JVlWSpePkdxAy9VZOfTFdqivZr/7i9yleSpbPNiSVL1gQxFdBqg0KS2ijlltDxlhfKU11yul/fFZDUbOkFBYZFN89rRZCxL+svM1VyaCQBAgNm2v0R3MQUkgAZas6dQD3+83nQMwNYo0QEveuuHXfrfkt2mY6ARufL3as9/rlLmlGu1/+On5CqqWcilct9WyeOqM9VKSGIbOWOTVLn3yCW6qzBb7tL8Oo8JCotSWGrX2seEtmivyj3r5amuVMWOlXJGJygoIlYlP6XLERyqyC5neO21wqyyKreum75c+aVVpqMAAIAmUFrp0o1vrlBxJYuMA2i4t5fu1oc/ZpqOAdgWJTrgJesyC/XIJ3wSbCdhKV2VeP6f1eL3Dyvh3FvkLsjWvhn3ylNZJk9pvuQMVlB4dJ3HOKPi5S7NP+L+3CU124Oi4us+JjJe7tICSVJ0r3MU0qK99r5+iwoXz1TzsffKU1GiwoUzlDDiRuUveFOZL1+v7Hf/JldxbqO/ZpiVWVCuO2ex0CgAAIHg7vdWaysLiQI4Af/3wVptzSk2HQOwpWDTAQA7Kql06fa3f1SVy2M6ChpRRMf+v3zTor3CUrtqz0t/UunGhQoKCfXKczqcwUo89+Y623I//bdi+o1RVfZ2lW9ZrJRrXlDRktnK/+oVJV34f17JAXO+2Zij177boesHdzAdBQAAeMmUb7fps7X7TMewJVdxrgrmT1P59hWyXJUKjk9R4vkTFZbSWVLNFIuFC2eoZPXn8lSWKqxVdyWce4tCEloddb/FKz9R4ZL35S7NV2iL9koYcaPCUrvW3p739asqXfe1HCHhih9ytaJ7Dqu9rXTjQpWu+1otLnnIOy8aAausyq1bZqzUnFvPVESo03QcwFYYiQ54wV8/WKsduaWmY8DLgsKjFZLQSq6CvQqKaia5XfJU1B095C4tkDOq2REf74yu2e75edR57WPKCuQ8ZHT6QRW71qj6wC7FnPI7Vexeo4gO/RUUGq7IbmeqYvfaE35N8E1Pfr5RqzIKTMcAAABesGhrrp76fJPpGLbkrijRvrfukYKC1eL3f1fKtZPVbPi1da4eLVoyW0UrPlbCyFuVfOUzcoSEK2fmg7Jc9U+pV7phgfK+eU3xg/6glAnPKbRFe+XMfLD2atKyrUtUuuFbtRj/qJoNvUZ5816Qu6xQUs1aSgUL3lDCIQNlgMayObtED3y4znQMwHYo0YFG9u6y3Zqzaq/pGGgCnqpyuQqy5IxKUFhyJykoWOW7VtfeXn1gj9xF+xWW2u2Ijw+OaylnVDNV7Fr1yz4ry1S5d9MRH2O5qpT35UtKHHmbHEFOyfLI8vy8ArvHLcviyge7qnZbuv3tlSqqqDYdBQAANKK80ir9v3dXye1h6jZvKPrhPQXHNlfz0RMVltpVIfHJimh/ikKapUiqGYVevHyO4gZeqsjOpyu0RXs1/91f5CrJU9nmxfXvd9mHijl5pKJ7n6PQ5mlKGHmrHCFhKln7pSSp+kCGwtv0UlhKZ0X1GCJHaKRchdmSpPz0qYrpe76CY1t4/weAgDV75R7NXJZhOgZgK5ToQCPakl2sv3/EPOh2lf/N66rYvVauwmxV7Nmg/e8/JjmCFNVjiILCohTd+xzlf/OaKnatUeW+rTrw2b8VltpNYa1+KcQzX71JZZsXSZIcDodi+o9V4aJ3VbZliar271Tup88qODpBkV0GHvb8BYveUUSH/gpt2VGSFNaqh8o2L1JVzg4Vr/xE4a26N80PAkZk5JXrvtlrTMcAAACN6P7312h/caXpGLZVvnWJQpM7a/+HjyvjhSu0d+odKl41r/Z2V2G23KX5imjXp3ZbUFiUwlK7qnLvxiPu03JXq2rfVoW3/eUxDkeQwtv1UWVmzWNCk9qrat9WuStKVLlva800Ms1SVbHnJ1Vlb1NMvzFeeb3Arz340Tpt3FdkOgZgG8yJDjSSimq3bv3fSpVXu01HgZe4inOV+/FTcpcXyRkRp7DWPZR85TNyRsZJkhLOvl55jiDt//CfstzVCm9/ihLPuaXuPvL2yFNZVvt97ICLZVVX6MDnL8hTUarw1j3UYvwjcgTXnWO9av9OlW38TikTXqjdFtltkCoy1mrfjHsVkthKzcfc7cVXD1/w2dp9evOHXbry9LamowAAgBM0c3mGPv8p23QMW6su2KfqHz9T7Knj1HLgeFVmbVH+16/I4QxRdK+z5S7JlyQFHTKVojMyvnZqlkO5y4oky3PY9IvOyHhVH9gjSYro0E9RPYdq3/Q/yxEcquaj/6ygkDDlfT5ZiaP/rOIfP1Pxyk/kjIhVwsjbFJrEsR0aX0W1R7e8tVKf3HGmIkOp/4ATxf9FQCN55JP12pxd8tt3hN9KGnvvUW93BIcq8dybD1sI9Nfa3vtJ3cc4HIo/64+KP+uPR913aFI7tbrh1UMeG6TEc29R4rm31PMo2NE/PlmvU9s1U7fkWNNRAADAccrIK9MjH3MFq9dZlsKSO6nZkKslSaEtO6o6d5eKV32m6F5ne/Wp48+8QvFnXlH7fcHC/ym8XR85gpwqXPyuUv/0H5VvXaoDnz6rlAnPeTULAtf23FJNmrtRj4w9yXQUwO8xnQvQCBZs3q//LdltOgaAAFDp8uiuWavlcjMHPgAA/sjjsfSXmatUUukyHcX2nNHNFNI8rc62kMQ2chftr71dkjyHjDp3lxUcNtK8dp+RsZIj6LCR6jWPaXbEx1QfyFDp+nTFn/VHVexeq/DWJ8kZGafIbmepKntbnStVgcb25g+7tGhbrukYgN+jRAdOUHFFNfMUA2hS6zKL9NL8baZjAACA4zBlwTYt25lvOkZACGvVQ9V5e+psq87LrF3UMziupZxRzVSxa1Xt7Z7KMlXu3aSw1G46EoczRKHJnVSxa3XtNsvyqGLn6jprIf1ym6UDn/9HzYZfp6DQCMnyyPL8/AHKwT8tBkfAeyxLunf2GpXywR1wQijRgRP02KcbtLewwnQMAAHmhW+2slAQAAB+5qe9hfrXl5tNxwgYsaeOVeXeTSpcPFPV+XtVun6+SlbPU/QpoyXVTK0Y03+sChe9q7ItS1S1f6dyP31WwdEJiuwysHY/2e/8n4pWfPyr/Y5T8erPVbL2a1XnZijv88myqisU3WvEYRlKVn8uZ0SsIjsNkCSFtequil1rVJm5UUXL5igkMU1B4dFe/kkg0GXklevxuRtMxwD8msOyLMt0CMBfLdi8X1f9d6npGAAC1EmtYvXhLYMU7OQzcQAAfF1FtVsXvLiQdZSaWNnWpSr4drqq8/cqOK6lYk8dp5g+o2pvtyxLhQtnqHj1PHkqShXeuocSzr1FIQmtau+z56U/KbrX2XXmOC9a8bGKlr4vd2m+Qlt0UMKIGxWW2rXOc7tL85X1xp1K/uNTCo5JrN1e8P3bKl7+kYIi49R89J8PexzgDQ6HNOPaATqjU3PTUQC/RIkOHKfiimqN/NcCRqEDMOrOc7ro9rM7m44BAAB+w+OfbdDLC7abjgEggLVuFqHPJw5WVFiw6SiA32HoGnCcmMYFgC9gWhcAAHzfxn1Fen3hDtMxAAS4Pfnl+udnTOsCHA9KdOA4fLdlv95ZlmE6BgCoyu3R3bPWyO3hwjIAAHyRZVl64IN1cvG7GoAP+N/S3fp+a67pGIDfoUQHGqjK5dGDc34yHQMAaq3NLNSMJbtMxwAAAEcwa/keLd+VbzoGAEiSLEu67/01qqh2m44C+BVKdKCBXv1uu3bklpqOAQB1PP35Jh0oqTQdAwAA/EpBWZUmzdtoOgYA1JGRV65XWaMBaBBKdKAB9haU68VvtpqOAQCHKapwadJcTtIBAPAlk+ZuVF5plekYAHCYyfO3Kauw3HQMwG9QogMN8I9P16ucS54A+Kj3Vu7Ryt1cLg4AgC9YsStP7y5nHSUAvqm82q3HPmWRUeBYUaIDx2jhllx9tnaf6RgAUC/Lkh6cs04eFi4DAMAol9ujv36wTha/kgH4sE/WZGnJ9gOmYwB+gRIdOAZVLo8e/Gid6RgA8JvWZRZpxtLdpmMAABDQpi3aqY37ik3HAIDf9NBHP8nNIBzgN1GiA8fgv9/v0Pb9LCYKwD88/fkm5l8FAMCQ/NIqPffVFtMxAOCYbNxXrBlLdpmOAfg8SnTgN+SVVuk/LCYKwI8Ullfr+a85eQcAwIT/pG9VcaXLdAwAOGbPfrlZ+QzCAY6KEh34DRwEA/BH/1uyWxl5ZaZjAAAQUDILyvXGD4zoBOBfCsqq9fQXm0zHAHwaJTpwFJkF5XqTg2AAfqjK7dGzX242HQMAgIDyry83q8rlMR0DABrsnWUZ2ra/xHQMwGdRogNHwUEwAH82Z1WmNu4rMh0DAICAsDm7WO+v3GM6BgAcF7fHYhAOcBSU6EA9OAgG4O88lvTkPC7LBACgKTw5b5M8lukUAHD8PlubpZ/2FpqOAfgkSnSgHk99zkEwAP/3zcYcLduZZzoGAAC2tnxnnr7akG06BgCcEMuSnv6cQTjAkVCiA0ewYleevlzPQTAAe5g0d6PpCAAA2NoT8/hdC8Ae0jft14pdDMIBDkWJDhzB058zDxgA+1ixK1/pG3NMxwAAwJa+3pCtZTvzTccAgEbz76+2mI4A+BxKdOAQK3fna/H2A6ZjAECj+k/6VtMRAACwpee+pmwCYC/fbcnVil18OAj8GiU6cIjJ6dtMRwCARrd8V76W7uCyTAAAGtOirblas4dF+ADYDx8QAnVRogO/sjm7WF9vZC50APb00nxGowMA0JimLNhuOgIAeMWCzfu1cjej0YGDKNGBX3lp/jZZlukUAOAd6Zv2a/3eItMxAACwhQ1ZRVqweb/pGADgNVypD/yCEh34WUZemT5evdd0DADwqpe+5UAYAIDG8DK/UwHY3Dcbs7XrQKnpGIBPoEQHfvbKgu1yeRiGDsDePlubxYEwAAAnKLOgXJ+syTIdAwC8ymNJU7/faToG4BMo0QFJ+4srNXN5hukYAOB1bo+lKd8yfysAACfite8YgAMgMLy3Yo+KK6pNxwCMo0QHJL31wy5VujymYwBAk3h/5R7ll1aZjgEAgF8qKKvSu8sYgAMgMJRUunjPA0SJDsjl9uidZbtNxwCAJlPp8nD1DQAAx+nNxbtUVuU2HQMAmsz0xTvl4eobBDhKdAS8L9ZnK7uo0nQMAGhSM5bslmVxIAwAQENUuz2avniX6RgA0KQy8sr15YZs0zEAoyjREfDe5CAYQADanVem+Zv3m44BAIBf+Wp9tnJLGIADIPD8d+EO0xEAoyjREdC25pRo8fYDpmMAgBFv8SEiAAAN8g7zAgMIUEt25OmnvYWmYwDGUKIjoL31AwUSgMCVvilHe/LLTMcAAMAv7C0o13dbuIoLQOCavmin6QiAMZToCFhlVS7NXrnHdAwAMMZj1cyNDgAAftvM5RliXT0AgezTNVkqZ2FlBChKdASsOav2qrjCZToGABg1c1mGqlwe0zEAAPBpHo+lWcsZgAMgsJVWuTXvpyzTMQAjKNERsGYtZz5DADhQWqVvNuaYjgEAgE9bsGW/MgvKTccAAONmr8g0HQEwghIdAWn3gTKt3F1gOgYA+IQPf+RAGACAo3mXBUUBQJK0aFuu9hVWmI4BNDlKdASkD1dRGAHAQd9sylFhebXpGAAA+KQDJZX6akO26RgA4BM8lvQBg3AQgCjREZAo0QHgF1Uuj+auZW5DAACO5P2Vmap2s6IoABz0/krWiEDgoURHwFmzp0Db95eajgEAPoXRJAAAHBm/IwGgri05JVqzp8B0DKBJUaIj4HAQDACHW7ozT3tZMA0AgDp25JZqfVaR6RgA4HNmr2A0OgILJToCittj6ePVTFkAAIeyLGnOqr2mYwAA4FM+XcPvRgA4ko/XZKna7TEdA2gylOgIKN9vzVVuSaXpGADgk+awXgQAAHV8soYBOABwJHmlVfp+a67pGECToURHQJm7bp/pCADgszbuK9aOXNaMAABAkrbvL9HGfcWmYwCAz/p6Q47pCECToURHwLAsS99szDYdAwB82lfreZ8EAECS5v3EABwAOJqvN3DugMBBiY6AsTazUNlFTOUCAEfzFQfCAABIkr74id+JAHA0ewsrtC6z0HQMoElQoiNgMLoSAH7bil35KiirMh0DAACjsosqtHpPgekYAODzmNIFgYISHQHjS97YAeA3uTyW0jfxfgkACGxfrM+WZZlOAQC+jytZESgo0REQMgvKtSGryHQMAPALX62nRAcABDauYgWAY7Nub6GyiypMxwC8jhIdAYGDYAA4dgs271eVy2M6BgAARlS5PFq6I890DADwC5bFaHQEBkp0BATe0AHg2BVXuvTD9gOmYwAAYMTK3fkqr3abjgEAfoN50REIKNFhe5UuNyNJAKCBFm7NNR0BAAAjFvE7EAAa5PutuSqv4sNH2BslOmzvx90FqmRaAgBoEEaiAwAC1aJt/A4EgIaodHm0Yle+6RiAV1Giw/YWcxAMAA32094iFVVUm44BAECTKq10afWeAtMxAMDvLN1B9wJ7o0SH7TGaEgAazu2xtIypsAAAAWbpjjxVuy3TMQDA7yzdybkD7I0SHbZWUe3WjxkFpmMAgF/iQ0gAQKD5nvnQAeC4rMooUBVT6cLGKNFhayt35/MmDgDHaTElOgAgwDAfOgAcn4pqj9ZmFpiOAXgNJTps7QcOggHguK1nXnQAQADJK63Shn1FpmMAgN9awnSQsDFKdNjaD9t5AweA4+WxpKW8jwIAAsTSHQdkMR06ABw31lSCnVGiw7aq3R6t3lNgOgYA+LXlu/JNRwAAoEms3lNoOgIA+LXlu/Ll8fBpJOyJEh22tTm7WJXMhw4AJ2RdJoUCACAw8DsPAE5McYWLabFgW5TosC0OggHgxK3by3spACAwcP4AACeOKV1gV5TosK21HAQDwAkrKKvW7gNlpmMAAOBVe/LLlF/GYtoAcKLW7WUkOuyJEh22tTaTN24AaAx8KAkAsDtGoQNA49jIdC6wKUp02JLL7dHGLN64AaAxUKIDAOyO33UA0Di2ZJfIzeKisCFKdNjS5uwSFhUFgEbC6DwAgN1xFSsANI5Kl0c7cktMxwAaHSU6bGltZoHpCABgGywuCgCwOz4wBoDGs3FfsekIQKOjRIctrWchCwBoNAVl1crIY3FRAIA9ZRaUK6+0ynQMALCNjVmU6LAfSnTY0rb9paYjAICtbM/lfRUAYE8MwAGAxsXiorAjSnTY0vb9zL8FAI2J91UAgF3t5INiAGhUGxiJDhuiRIftVFS7lVVUYToGANjKDgoGAIBN7TzA7zgAaEyZBeUqrqg2HQNoVJTosJ0duaWyLNMpAMBeKNEBAHa1m3U/AKDRbWJxUdgMJTpsZzvzoQNAo+O9FQBgV7sOUKIDQGPjvRV2Q4kO29mRy7y9ANDYsgrLVVHtNh0DAIBGVe32KLOg3HQMALCdvby3wmYo0WE725lyAAAancdizlgAgP1k5pfL7WEuSABobHsLKdFhL5TosB3m7QUA79jBlC4AAJvZxXzoAOAVe/Ip0WEvlOiwnUzeqAHAK7jcHQBgN7u4ygoAvILpXGA3lOiwFY/H0oHSKtMxAMCW9hdXmo4AAECjYuE7APCOvQUVpiMAjYoSHbaSW1rJnIYA4CU5lOgAAJvJYDoXAPCK8mq38hjkCBuhRIet5BRR8ACAt2QXMZoEAGAvuSWcPwCAtzClC+yEEh22klNMwQMA3sJIdACA3TBKEgC8hzWVYCeU6LCVbEaiA4DXMBIdAGA3lOgA4D2MRIedUKLDVpjOBQC8p7jCpYpqt+kYAAA0Cpfbo+JKl+kYAGBbfFAJO6FEh60wnQsAeBcfVgIA7CK/rFqWZToFANhXcQUfVMI+KNFhKywMBADetZ/3WQCATeSXMUISALypqLzadASg0VCiw1ZKuBwTALyK91kAgF0cKKFEBwBvKmIkOmyEEh22UlrJXL0A4E1llOgAAJtgJDoAeFdxBSPRYR+U6LCVUsodAPAqRqIDAOyCBe8AwLuYEx12QokOW6FEBwDv4n0WAGAXBYxEBwCvKq5kJDrsgxIdtsIISQDwrtIqps0CANhDRbXHdAQAsDVGosNOKNFhK2WUOwDgVYxEBwDYRbWHEh0AvIkSHXZCiQ7bqKh2y+WxTMcAAFujRAcA2IXLzbkDAHiT22Nx/gDboESHbTAKHQC8r6SS91oAgD243IxEBwBvK6/m/AH2QIkO26h08cYMAN5WReEAALCJaq5iBQCv8/BeC5ugRIdt8L4MAN7nsXizBQDYQ7WLD4YBwNvoamAXlOiwDT7dBADvsyjRAQA2wXpKAOB9bs4fYBOU6LAN3pcBwPs8DNoDANhENVOUAYDXMeARdhFsOgDQWFo48rQ27VnTMQDA1qrjBkrqZzoGAAAnzOWm2IH/aBbi0ox2c9WmcovpKECDhKiPpEjTMYATRokO2wh3uBSes9x0DACwt8RU0wkAAGgULi6vgp84LylXzwW/oNAMCnT4oSDea2EPlOiwDwezEwGA1/FeCwCwiSCHw3QE4DdN7rRU52W9JIe70nQU4PgEOU0nABoFJTrsg2IHALyP91oAgE1EhFLswHe1i6jQzJQZarHna9NRgBMTRPUIe+BfMuyDN2YA8D7eawEANhERQokO33Rtqwz9X+W/5dybZToKcOIcvNfCHjgThn2EsFAFAHhdKO+1AAB7CKdEh48JC/JoRsev1W/PdDks5pGGTQRxJSvsgRId9hEabToBANgf77UAAJtgOhf4kv5xxZoW+7KiM1aajgI0Lq5khU3wLxn2ERRUMxq9usx0EgCwL0p0AIBNMJ0LfMXf2m/Un/L+Lcf+ItNRgEbmkIIjTIcAGgUlOuwlNJoSHQC8KYwSHQBgD5ToMK1ZiEuz236gDns+MB0F8I7wWMlJ9Qh74F8y7CUsWirNMZ0CAOyLkegAAJsIZzoXGHR+Uq7+7XxeoXu2mo4CeE9koukEQKOhRIe9UO4AgHeFxZhOAABAo2AkOkx5qdMSjcqaIoe70nQUwLsim5tOADQaSnTYCyU6AHhXaJTpBAAANApKdDS1DpEVejf5TSXtSTcdBWgajESHjVCiw16YqxcAvIsPKwEANhEXEWI6AgLIda0zdH/5v+Tcu890FKDpUKLDRijRYS8RzUwnAAB7430WAGATLWLDTEdAAAgL8uh/Hb/WKXumy2F5TMcBmlYUJTrsgxId9hLd0nQCALC3mGTTCQAAaBQtYijR4V2nxRdpaswURWWsMh0FMIOR6LARSnTYC+UOAHhPUAgHwgAA24iPDFVocJCqXIwORuN7qP0GTcj7txz7i01HAczh3AE2QokOe6FEBwDviW4pORymUwAA0GhaxIRpT3656RiwkcTQar2X9oHa7/nQdBTAPEp02EiQ6QBAo4qmRAcAr4lhyiwAgL0wpQsa05gW+7U44WEKdOCgyOamEwCNhpHosBdGogOA98SkmE4AAECjahETbjoCbMDhsDSl4xKdmzVFDneV6TiA74hMMJ0AaDSU6LAXSnQA8B4WbwYA2EyLWEai48R0jCzXzJZvKHHPt6ajAL6H6VxgI0znAnsJjZJCY0ynAAB74oNKAIDNtIxlJDqO342td+uLiPuVmEWBDhwmKESKiDedAmg0jESH/cSmSLmsgA4AjY7pXAAANpPEnOg4DhFOt/7X4Sv1yXhDDlmm4wC+KaG96QRAo6JEh/0kdJByN5tOAQD2w4EwAMBmUuMiTEeAnxkQX6T/xkxRVMYq01EA39a8i+kEQKOiRIf9JHYynQAA7Cmxs+kEAAA0qraJkaYjwI880n69rsx7To79XPkM/KakrqYTAI2KEh32k9jRdAIAsJ+wWCmGhUUBAPbSKj5CYcFBqnR5TEeBD0sKrdastNlqt+cj01EA/8FIdNgMC4vCfhgpCQCNL6GD6QQAADS6oCAHo9FxVGNb5mhRs4cp0IGGokSHzTASHfbDdC4A0Ph4bwUA2FT75lHanF1iOgZ8jMNh6ZWOP2hE1styuKtMxwH8jIMSHbZDiQ77iU2RQqOlKg6EAaDRUKIDAGyqY1K0pGzTMeBDOkeV650W05W4Z4HpKIB/ik2VwqJNpwAaFdO5wJ6YFx0AGldzpsoCANhT55YUPfjFzW126vOw+5SYRYEOHDdGocOGGIkOe0rsJGWtNp0CAOyDDycBADbVuUWM6QjwARFOt97p8IV6Z7wlhyzTcQD/ltTVdAKg0VGiw55adDedAADsw+GUmnMgDACwp04tohXkkDz0pgFrULNCvRo1RZEZDMQCGgVXscKGmM4F9pTS13QCALCPpK5SaKTpFAAAeEV4iFNpCfyeC1T/6PCT3nLfrchcCnSg0TAABzbESHTYUyolOgA0mpQ+phMAAOBV3ZJjtfNAmekYaEJJodWanfae0vZ8bDoKYD9M5wIbYiQ67CkqUYprYzoFANhDah/TCQAA8KqT28SbjoAmdFHLHC1q9ncKdMAbwuOl6BamUwCNjpHosK+Uk6XCDNMpAMD/MRIdAGBzp6TFm46AJuBwWHqt02INz3xZDk+16TiAPSX3Mp0A8ApGosO+GDkJACfO4eRAGABge71bxys4yGE6BryoS1S5VrR9SWdnvEiBDnhT2zNMJwC8ghId9sXiogBw4lhUFAAQACJCneqaHGM6BrzktjY7NS/sXiXsW2g6CmB/lOiwKaZzgX0xEh0AThxTuQAAAkTftHj9tLfIdAw0oiinR293mKdeGTPkkGU6DmB/QSFS69NMpwC8gpHosK+o5lJ8mukUAODfWp1iOgEAAE2ib5tmpiOgEZ2ZUKhlKU+od8ZbFOhAU0k5matYYVuU6LC3tmeaTgAA/q0d76MAgMBwSltKdLv4Z4e1etN1lyJz15qOAgSWtgNNJwC8hhId9kb5AwDHL7K51KK76RQAADSJ9s2j1CwyxHQMnIAWYdX6rtP/dPnex+WoKjUdBwg8bQeZTgB4DSU67K39WaYTAID/asdBMAAgsPRpE286Ao7TJcnZ+j7+IbXZ84npKECAckhpp5sOAXgNJTrsLT6NedEB4Hi144NIAEBg6d8uwXQENJDDYWlq54V6qugehRTuNB0HCFwtekgRTIsF+6JEh/21G2w6AQD4J0p0AECAGdw5yXQENEC36DKtbDtZwzImy+GpNh0HCGzMhw6bo0SH/TEvOgA0XFSS1KKb6RQAADSpk1rFqnl0qOkYOAa3p+3QZyH3qdm+701HASBJbc8wnQDwKkp02B/zogNAw/EBJAAgADkcDkaj+7gop0cfd/5Uf8l5QEHluabjADgojRId9kaJDvuLay0ldDCdAgD8C1O5AAAC1JCulOi+anBCgZYnT1KvjBlyyDIdB8BBzdpLsSmmUwBeRYmOwNB5pOkEAOBfuvC+CQAITGd1TlKQw3QKHOqJDms0vfpuRRxYZzoKgEO1Zy062B8lOgJD11GmEwCA/0juVXMVDwAAASghKlS9WsWZjoGfJYdVaWGnGbp07yQ5qktNxwFwJN0vMJ0A8DpKdASGtmdK4RwIA8Ax6Xq+6QQAABg1pGsL0xEg6ffJ+7Qw7kG13vOp6SgA6hMeJ3UYYjoF4HWU6AgMzmCp0wjTKQDAP3Q9z3QCAACMGtKFedFNcjo8mt75Oz1ZdI+Ci3abjgPgaLqcJzlDTKcAvI4SHYGDkZUA8NtiUqXUvqZTAABgVJ828YqPpBQyoXt0mVa0nawhGS/J4XGZjgPgt/QYazoB0CQo0RE4Oo2QgjgQBoCjYg0JAADkDHJoGFO6NLmJadv1aci9it+3yHQUAMciNFrqONx0CqBJUKIjcETES20Hmk4BAL6Nq3YAAJAkjTk5xXSEgBEV7NannT/WxJwHFFR+wHQcAMeq87lSSLjpFECToERHYOk62nQCAPBdodFS+8GmUwAA4BPO6pzElC5NYEhivpa3nKSeGW+bjgKgoXpcYDoB0GQo0RFYeo6THPyzB4Aj6jZaCg4znQIAAJ8Q4gzSeSclm45ha091WKVpVfco4sBPpqMAaKjgiJqR6ECAoE1EYIlJZpQlANSn93jTCQAA8CljTk41HcGWUsKr9H3HN/X7vU/KUV1qOg6A49HpbCk0ynQKoMlQoiPw9L7UdAIA8D3RLaUOw0ynAADAp5zePlEtY7lKqzFdlpKl72L/plaZc01HAXAieow1nQBoUpToCDzdx9RcdgQA+MVJF0tBTtMpAADwKUFBDo3uxWj0xuB0ePRm5wV6vPBeBRdlmI4D4EQ4Q6UuI02nAJoUJToCT1iM1PU80ykAwLf0+r3pBAAA+KQxJ6eYjuD3esaUamXaizorY4ocHpfpOABOVIehUnic6RRAk6JER2Bi3l8A+EXzLlKrU0ynAADAJ/VNa6a0hEjTMfzWnW236ePgexWX/YPpKAAay0mXmE4ANDlKdASmTiOkyETTKQDAN/Tig0UAAI6G0egNFxXs1tzOH+n27L8pqDzPdBwAjSUyUeo5znQKoMlRoiMwOUOknheZTgEAPsAh9WYqFwAAjmZ8/zZyOEyn8B/DE/O1osU/1T3jHdNRADS2vn+UgllwGYGHEh2Bq98E0wkAwLyOw6Rm7UynAADAp7VNjNJZnZNMx/ALz3T8Ua9X3a3wvA2mowBobI4gqf+fTKcAjKBER+BKPklqc7rpFABg1qnXmU4AAIBfuOr0tqYj+LRW4ZVa1PENXZz5lBzVZabjAPCGTiMYgIOARYmOwEZ5BCCQxbWRuowynQIAAL8wvFsLtYqPMB3DJ12ekqVvY/6m1Mx5pqMA8CY6FAQwSnQEth5jpSguywQQoPpdLQU5TacAAMAvBAU5dPmANNMxfIrT4dGMzt/qsYJ7FFy8x3QcAN4U31bqdI7pFIAxlOgIbMGhUt8rTacAgKbnDJVOudp0CgAA/Mplp7ZRqJPTaEnqFVOqlWkvalDGy3JYbtNxAHhb/2ukIN7/ELj41w/0/1PN4hgAEEi6j5GiW5hOAQCAX0mMDtN5vZJNxzDurrZbNSf4XsVl/2A6CoCm4AyT+l5lOgVgFM0hEN9G6jzSdAoAaFrMZwgAwHG5MoAXGI0Jdmle5zm6LftBBZXnmY4DoKn0HCdFJZpOARhFiQ5I0oAbTCcAgKbTspfU9gzTKQAA8Ev92yWoe0qs6RhN7uzEPC1r8U91y3jXdBQATY0BOAAlOiBJ6jhcSjnZdAoAaBpnTjSdAAAAv3bNoHamIzSpf3Vcqdcq71Z43kbTUQA0teTeUpvTTKcAjKNEBw4688+mEwCA9zVrL/W80HQKAAD82oV9W6lVfITpGF7XOrxSP3Scpgszn5bDVW46DgATGIUOSKJEB37RfayU2Ml0CgDwrkF3SEFO0ykAAPBrIc4g3Tikg+kYXnVlaqbmxzyg5MwvTEcBYEpsa+nky0ynAHwCJTpwUFCQNOj/mU4BAN4T3VLqc4XpFAAA2ML4/m3UIibMdIxGFxJk6X+d5+uR/PsUXJxpOg4AkwbfKQXb730OOB6U6MCv9b5Mikk1nQIAvOP0WzgIBgCgkYSHOHXDYHuNRu8TW6IVbZ7TGRmvyGG5TccBYFJ8mtT3StMpAJ9BiQ78WnCodMZtplMAQOMLj5NOvdZ0CgAAbOWKAW2VEBVqOkajuLftFr0fdK9is5eajgLAFwy+W3KGmE4B+AxKdOBQ/SZIEQmmUwBA4zr1eiksxnQKAABsJSLUqWvPbG86xgmJCXbp884f6ObshxRUkW86DgBf0Ky9dPLlplMAPoUSHThUaBSj0QHYS1hszVQuAACg0V01sK1iw4NNxzgu5zY/oOUtHlPXjFmmowDwJUPulZz++b4GeAslOnAkA26WopNNpwCAxnHG7VJUoukUAADYUkx4iCac0c50jAZ7ruMKvVxxj8LyNpmOAsCXJHaWeo83nQLwOZTowJGERkpD7jGdAgBOXFQLaeCtplMAAGBrfzqzvWL8ZDR66/BK/dBhqsZmPiOHq9x0HAC+Zsi9UpDTdArA51CiA/U55WopoYPpFABwYgbfXTNNFQAA8Jr4yFDdNqyT6Ri/6erUTM2PeUDJe780HQWAL0rqLp10sekUgE+iRAfq4wyWhj9gOgUAHL9m7aT+15hOAQBAQJgwqJ1aN4swHeOIQoIsvdP5G/09/z4FF2eajgPAVw29VwqiKgSOhP8zgKPpeZGUcrLpFABwfIY9IDlDTKcAACAghAU7de+obqZjHOaUuBKtbP0vnZ7xmhyW23QcAL6q5UlSj3GmUwA+ixIdOBqHQzr7IdMpAKDhWvaSel1iOgUAAAFlzMmpOiUt3nSMWv/XbrPec9yjmJzlpqMA8HVD76/pQAAcESU68Fs6nS11GGo6BQA0zIi/cxAMAIABfx3dw3QExYW49GXn93XDvr8rqKLAdBwAvq79YKn770ynAHwaJTpwLEZNkoKCTacAgGPT5Typ8wjTKQAACEj92jbT6N4pxp5/VNIBLW3+D3XOeM9YBgB+xBkqnf+M6RSAz6NEB45Fi+7SgJtMpwCA3xYcLp03yXQKAAAC2n2juik0uOlPt1/ouFwvld+tsPzNTf7cAPzUGbdLSV1MpwB8HiU6cKyG3idFJ5tOAQBHd+afpWbtTKcAACCgtUmI1DVntGuy50uLqNDSDq9rTOazcrgqmux5Afi5+LbS4LtNpwD8AiU6cKzCYqRzHzWdAgDq16ydNGii6RQAAEDSrcM7KSkmzOvPMyF1j9KjHlCLvV97/bkA2Mz5T0khEaZTAH6BEh1oiN7jpbaDTKcAgCMbNUkKCTedAgAASIoND9Hfx/T02v5DgizN7Py1Hsq/T86SvV57HgA21e13UpeRplMAfoMSHWio859ikVEAvqfzSKnreaZTAACAXxndO0Xn9GjZ6Ps9Ja5YP7Z+VqdlvC6H5Wn0/QOwuZAo6bwnTKcA/AolOtBQLXtKp91gOgUA/ILFRAEA8FmPjj1JMWGNNwjngXabNFv3KDpnRaPtE0CAGXKPFNfadArAr1CiA8dj2F+l+DTTKQCgxtD7pIQOplMAAIAjSI4L1z2jup7wfpqFuPRV59m6bt/DclQWNkIyBJpJCyvleLhIE+f9svhshcvSrZ+WK/HJYkX/s0gXzyxTdsnRr26wLEsPplco5ZliRTxWpBFvlGrLAXft7ZUuS1d+UK7Yx4vU5YUSfbXdVefxT31fqds/K2/cF4djl9RdGnir6RSA36FEB45HWLR0wYuSHKaTAAh0rfpLZ9xhOgUAADiKP57eVv3bNjvux5+XlKslzR9Vp4zZjZgKgWRZplsvr6hS75Z1a6A/z6vQx5tdmvX7CH07IUp7iy1dNPPoBfeT31fp+SVVmjI6XEuui1JUqEMj3ypThcuSJL2yolor9rq1+Noo3dAvRJfPLpdl1dy2I9+jV1dW67GzWcfHDIf0u2clZ4jpIIDfoUQHjleHIVL/P5lOASCQOcOkcZOlIKfpJAAA4CgcDocmXdxLocENPwWf3GmpJpfdrdD8LV5IhkBQUmXpivfL9eqYCDUL/2UgWGGFpdd/rNazI8M1vH2w+qU6NXVsuBZluPXDHtcR92VZlv69pEoPDA7T2G4h6t3SqTfGRWhvsaUPN9Y8ZkOuWxd0DVbPFk7demqo9pdZyi2rKdFv/rRcT4wIU2wYA9KMOPkPUtszTKcA/BIlOnAiznmEaV0AmDPsfinpxC8PBwAA3tepRYxuHdrpmO/fLqJCyzq8pvP3/FsOd6UXk8Hubv2sQqM7B2tEh7pz86/IcqvaozrbuzV3Ki3OocUZ7kN3I0naUWBpX4lV5zFx4Q4NaO2sfczJLZ1auNut8mpLn29zKSXaoeaRDs1YU63wYIcu7M4oaCMiE6VzHzWdAvBblOjAiWBaFwCmtOrHNC4AAPiZW4Z1VNeWMb95v2tbZejryP9T0t5vmiAV7OydddVameXW4yPCDrttX4mlUKcUH173fLZllEP7Sqwj7m/fz/Olt4w6wmNKa277U98QndwySD0ml+ix7yo18/cRyq+QHpxfoRfOC9cD31So0/PFGvlWqTKLjj7/OhrRmOelqOamUwB+q/GWCAcC1cFpXZa/bjoJvOzv8yv08LdVdbZ1TQzSxtuiJdUsynPn5xV65yeXKl2WRnYK1uTzw9Uyuv7PKy3L0kPzK/XqymoVVFga1Mapl0aHq3NizfQclS5L131coTkbq5UcHaTJo8PrjPp46vtK7S706IXzI7zwiuGznGHSuJeYxgUAAD8T4gzSM+NP1oWTv1e1+/CSMizIoxkdv1a/PdPlsCgXcWIyCj36f/Mq9OWVkQoPbrqBXyFOh/4zuu75yTVzynXHaaH6cZ9bH250afVN0Xry+0rdMa9Cs8dHNlm2gHXKVVL335lOAfg1RqIDjYFpXQJGz6QgZd0ZXfu18E+/HPCxKA+aDNO4AADgt05qFae/nHP47/H+ccVa0epZ9c+YSoGORrEiy62cUkunvFyq4EeKFPxIkb7d5dbzS6oU/EiRWkY5VOWWCirqfqCTXWopOfrIpXvyzwOEskuP8JioI1dM6Ttc+inHrdtOC9X8nW6d3zlYUaEOje8Zovk7jzxtDBpRQkdp1CTTKQC/R4kONIawaOmiV6UgLu6wu+CgmgPHg1/NI2veRlmUB02m3VnSGf/PdAoAAHACbhzcQQM7JNZ+/7f2GzVLdyt6/0qDqWA3Z7cP1tqbo7Tqpl+++qcG6YreIT//t1MhQdLX2385X9mU69buQksD2xz5isf28Q4lRzvqPKao0tKSPe4jPqbCZenWzyr08u8i5AxyyO2Rqn/uzas9kttz5Glj0EiCgmu6itAo00kAv0eJDjSWtNOlYf9nOgW8bEueR6nPFKvDc8W64v0y7S6sGSXEojxoEpHNf/7Ajl/fAAD4s6Agh5699GR1iJW+6TRL12Y9IkdlkelYsJmYMIdOauGs8xUV4lBiRM32uHCHru0bor98UaH0HS6t2OvWNXMqNLC1U6e3/tV5zYsl+mBDtSTJ4XBo4oBQ/eO7Sn20qVprs9266oNypcY4NK7b4YPKHv22Uud3DlbflJqCfVCaU+9vrNaabLdeXFqlQWkMRPOqIfdJrfuZTgHYAu9WQGM68y/Sju+k7emmk8ALBrRyatrYCHVtHqSsYksPf1ups6aWat3N0V5dlGdNtls9JpeoeaSjzqI886+O0gPfVOidddXqmBCk/14QoVaxlKv25ZAunCLFppgOAgAAGkFKXIQ+v8ipkHc+MB0FAexfo8IV9HmFLp5Zpkq3NLJjsCaPrjtd5KYDHhVW/nJOc8+gUJVWW7rh4woVVFg6M82peX88fN71dTluzVzv0qobfxkFfUmPYM3fGayzppaqa2KQ/ncx86F7TdtB0ll/MZ0CsA2HdXByXQCNoyRHmnKmVJJtOgm8rKDCUtt/F+vZc8MVEeLQNXPKVflAbJ37nPZqiYa1C9YT5xw+b/miDJcG/bdMe/8SrZSYX8rv8bPK5HBI715y5APKa+aUq0/LILVvFqT/+7pSS66L0pPfV2rdfg+L8tjZGXdI5z5qOgUAAGhsn90jLX3ZdAoAdhLZXLppIQNwgEbEkEWgsUW3kC56RXLwv5fdxYc71CUxSFvzPEqOZlEeeFHrU6WzHzSdAgAAeMO5/5BS+5pOAcA2HNJFL1OgA42Mlg/whg5Da6Z2ga2VVFnaludRSoxD/VJYlAdeEh4nXfJfycn89wAA2FJwqHTJVCksznQSAHZw5p+lTiNMpwBshxId8JZh/yelnWE6BRrRXV9U6NudLu0s8GhRhksXvlsmZ5BDfzgphEV54D0XvCjFp5lOAQAAvCmhvXTB86ZTAPB3aQOl4Q+YTgHYEo0L4C1BTmn8dOmVYVLRHtNp0Aj2FHn0h9nlOlBuKSnSoTPTnPrh2igl/Tz1CovyoNGd+RepxwWmUwAAgKbQc5y06wZp6SumkwDwR5HNpYtfr+kiADQ6FhYFvG3vKum/oyRXuekkAPxJl/OkP7wtOY48pz4AALAht0v63++lbd+YTgLAnwSHS1d/LLU5zXQSwLaYzgXwttQ+0tgXTacA4E+SukkXv0qBDgBAoHEGS7+fJiV1N50EgN9wSOMmU6ADXkaJDjSFXpew0CiAYxPRrGYEeliM6SQAAMCE8Djp8nelqCTTSQD4g+F/lU662HQKwPYo0YGmcvaDNdMzAEB9gn4efZbQwXQSAABgUrO20h/ekYIjTCcB4Mv6XCENvtt0CiAgUKIDTcXhqJmeIamb6SQAfNW5j0kdhppOAQAAfEHr/tKFUyQxvRuAI2h3ljTmOdMpgIBBiQ40pbCYmhElXJoJ4FD9rpFOv8l0CgAA4Et6jqu5ohUAfi2xkzT+DckZYjoJEDAo0YGmltBeumKWFBptOgkAX9Htd9LoZ0ynAAAAvuisv0h9rzSdAoCviEiQLp8pRSaYTgIEFEp0wITUvtKlb0pBfGoMBLy0M6SLX5eCnKaTAAAAX/W7f0ntB5tOAcA0Z5h02f+kxI6mkwABhxIdMKXjcOY4BAJdi57SH96WQsJNJwEAAL7MGSKNf1Nq3sV0EgAmjX1RajvQdAogIFGiAyb1ukQa9bjpFABMiEuT/jhbiog3nQQAAPiDiPifp3BobjoJABOG3i/1Hm86BRCwKNEB006/WRo00XQKAE0pMlG68n0pNsV0EgAA4E8S2td8CB8ebzoJgKZ02o3S0PtMpwACGiU64AvOeVjq80fTKQA0hZAo6fJZUvPOppMAAAB/lNpHumoORToQKE67UTr/SdMpgIBHiQ74iguel066xHQKAN4UEildMVNq3c90EgAA4M8o0oHAQIEO+AxKdMBXBDmli16ReowznQSANwRHSH94R2p3pukkAADADijSAXujQAd8CiU64EuCnNLFr0vdx5hOAqAxBYdLl82QOgwxnQQAANgJRTpgTwNuokAHfAwlOuBrnMHSJVOl7heYTgKgMQRHSJf9T+p0tukkAADAjijSAXsZcJN03hOmUwA4hMOyLMt0CABH4HZJ718n/fSB6SQAjldIZM0ULoxABwAA3rZ3lfTGWKmiwHQSAMeLAh3wWYxEB3yVM7hmapde400nAXA8QqKkK2ZRoAMAgKbBiHTAv1GgAz6NEh3wZUFO6cKXpdNuMJ0EQENEJkpXf8wiogAAoGlRpAP+iQId8HlM5wL4i2+fktL/YToFgN8SlyZd+YHUvJPpJAAAIFBlrZbevFAqO2A6CYDfcvqt0qh/mk4B4DdQogP+ZMV06ZM/S5bbdBIAR9Kip/TH2VJsiukkAAAg0OXtkP43XsrdbDoJgCNxBEkjH5dOv8l0EgDHgBId8DcbP5Xeu1ZylZtOAuDX2g6SLvufFBFvOgkAAECN8gJp5pXSjgWmkwD4tdDomjXQuo4ynQTAMaJEB/zRrsXS25dKFYWmkwCQpG6/qzkIDgk3nQQAAKAud3XN1aw/vmk6CQBJikmVLn9XSultOgmABqBEB/xV9nppxu+loj2mkwCBrd810uhnahYCBgAA8FUL/yV99bAkKgDAmJSTpT+8y/SPgB+iRAf8WUmO9O6VUsYPppMAgScouGYOwwE3mE4CAABwbNbPkd6/kakhARO6ni9d/JoUGmU6CYDjQIkO+DtXlfTpn6Uf3zKdBAgcEQnS76dJHYaYTgIAANAwmSukt/8glWSbTgIEjtNvlc79hxQUZDoJgONEiQ7YxQ9TpM//T7LcppMA9pbUXfrD21JCe9NJAAAAjk9BhvS/8VLOetNJAHsLCpbOe1I69VrTSQCcIEp0wE62pUuzJkgVBaaTAPbU9XzpoleksBjTSQAAAE5MRZH03jXS1q9MJwHsKSxW+v1UqdMI00kANAJKdMBuDmyT3rlc2r/RdBLAXs66Sxr+gORwmE4CAADQODxu6YsHpB8mm04C2EtiJ2n8m1LLHqaTAGgklOiAHVUWS5/8WVo7y3QSwP+Fx0tj/yN1/53pJAAAAN6xaZ405xap7IDpJID/63OFdP5TLCAK2AwlOmBnK9+U5t4jVZeZTgL4pzYDpItfl+LbmE4CAADgXUVZ0gc3SDsWmE4C+KewWOl3/5J6XWI6CQAvoEQH7C5nY8086fs3mE4C+BGHdOZEadgDkjPYdBgAAICm4fFI3/9LSv+n5HGZTgP4j1b9pUtel5q1M50EgJdQogOBoLq8ZkT6yjdMJwF8X1SSdOEUFgACAACBa89y6b0/SQW7TCcBfJsjSBo0URr2VwbfADZHiQ4EkrXvSR9PlKqKTScBfFP7wdJFr0oxyaaTAAAAmFVRJH0yUVo323QSwDfFpEgXvix1GGI6CYAmQIkOBJq8HdKc26RdC00nAXxHcHjN6JGBt0lBQabTAAAA+I4f35I+u0eqLjWdBPAdnUdK416SohJNJwHQRCjRgUBkWdLSV6Wv/s7BMND6NGncZKl5Z9NJAAAAfFPuVum9a6R9a0wnAcxyhknnPCKdfpPpJACaGCU6EMgYlY5AxuhzAACAY+eqktIfkxa/yKKjCEwpJ0tj/yMl9zKdBIABlOhAoGNUOgIRo88BAACOT/Z66dO/SLsXm04CNI2wWGn4A9Kp10lBTtNpABhCiQ6gRt4O6aPbpZ3fmU4CeE9whDTs/xh9DgAAcCIsS1o1Q/ryQansgOk0gPecdLE08p9STLLpJAAMo0QHUNfqd6Uv/yaVZJtOAjSurqOlUY9LzdqaTgIAAGAPZXnSVw9JK9+URLUAG0noKI1+Wuo43HQSAD6CEh3A4SqKpPmPS0tfYb5D+L+EDtJ5T0qdzzGdBAAAwJ52L6mZ4iV7nekkwIkJDpfO/It05kQpOMx0GgA+hBIdQP2y10uf3SXt+t50EqDhQiKls/4inXEHB8AAAADe5nZJS6bUDMapKjGdBmi4jmdL5z8lJXY0nQSAD6JEB/Db1sySvnhAKtlnOglwbLqPkUY+LsW3MZ0EAAAgsBRmSvPukzZ8ZDoJcGxiUmqmfex5oekkAHwYJTqAY1NZLH3/vLT4P1J1qek0wJGl9JHOeVjqMNR0EgAAgMC25Uvpi79J+zeYTgIcWXC4dOp10tD7pLAY02kA+DhKdAANU5IjffuktGKa5Kk2nQaokdhJGv6A1GOc5HCYTgMAAABJ8nikn96X5k+SDmwxnQao4QyVTrlaOutOKTbFdBoAfoISHcDxydshpT8mrX1PEm8jMCQmRRpyr9T3SskZbDoNAAAAjsTjltbMlL59QsrfYToNAlVQiNT3Cmnw3VJca9NpAPgZSnQAJ2bfWumrh6WtX5pOgkASHied+WdpwE1SSITpNAAAADgWbpe0aoa04GmpcLfpNAgUDqd08h+kIXdLzdqZTgPAT1GiA2gcu3+QvntG2vKF6SSws4iEmuJ8wA1SRDPTaQAAAHA8XFXSj29I3z0rFWWaTgO7cgRJvX5fc+VqYkfTaQD4OUp0AI1r39qag+H1cyTLbToN7CK2lTTwNqnf1VJolOk0AAAAaAyuSmn5VGnhs1JJtuk0sA2H1HOcNPR+Kamr6TAAbIISHYB3HNgmLXpeWvW25K40nQb+KrGTNGii1PtSKTjUdBoAAAB4Q3W5tOw1afF/pOIs02ngrxxOqdtoaeh9UsueptMAsBlKdADeVZQl/fAfacV0qbLIdBr4i9S+NeV59wukoCDTaQAAANAU3C5p4yc1hfrO70yngb+IaiGdcpXU/xoWDAXgNZToAJpGZYm05l1p+X+l7HWm08AXBYdLPS+UTr1Oat3fdBoAAACYtH9TTZm++h0G4+DI0gbWnDt0v4CrVgF4HSU6gKa3a3HNAfGGjyR3lek0MK1ZO6nfNTWjRyITTKcBAACAL6kskdbOlJa9zmAcSKHRUu/xNeU5U7YAaEKU6ADMKdkvrZwurZgmFWaYToOm5AiSOp1Tc/DbaQRTtgAAAOC3MRgncCV1qzl3OPkyKSzGdBoAAYgSHYB5Ho+041tpzUxpw8dSVbHpRPCWFj1rRo70uoT5CgEAAHB8GIwTGIJCahYKPfU6qf1ZptMACHCU6AB8S3W5tOmzmkJ969eSp9p0Ipyo2FY1pXmv8VLySabTAAAAwC48Hmn3Yumn96X1c6TS/aYT4UQ5nFK7M6WTLqqZ65zpHgH4CEp0AL6rLE9aN1taO0vKWCqJtyu/ER5Xc9Dbe7zU9kymawEAAIB3edzSzu+kde/XXN1anmc6EY6VI6hmkdCeF0o9xknRSaYTAcBhKNEB+IfifdKmudLmedL2byVXuelEOFR8W6nr+VLX86S2gyRnsOlEAAAACERul7RzgbTxs5qrXIsyTSfCoZyhUruzpG7nS11HS7EpphMBwFFRogPwP1Vl0vb0mgPizZ9z2aYxDql1f6nLqJryvGUP04EAAACAw+39Udr4aU2pnvOT6TSBKyxO6nxOTXHe6RwpPNZ0IgA4ZpToAPybxyNlLpe2fSPtXCjtWSa5Kkynsq/Y1jVzFLYfXHMAHN3CdCIAAADg2OXvlHZ8VzOX+q7va76Hd4RESW1OldLOkNqeIaWdLjlDTKcCgONCiQ7AXqoraor0nQt/KdXdlaZT+a/YVjWlebszay63TGhvOhEAAADQeIqyasr03YulXYulnPViLabjFJFQM7d524E1xXnKyUzxCMA2KNEB2Ft1hbRnqbR7iZS1Stq7SiraYzqVb3KGSi17Sil9pFan1BTnCR1MpwIAAACaTlmelLFE2rWo5itrteSpNp3KN8W2+rk0/3mkeVI3yeEwnQoAvIISHUDgKdn/S6GetapmjsRAW2zo14V5ap+aP1v25PJKAAAA4Neqymqubs1aJeVulvZvrvmzosB0sqYTFCw1ay8ldZWad5aSuktpA6Rm7UwnA4AmQ4kOAJJUeqDmYPjA1rpfeTv8ezqYyOY1B7qJHaXETr98JXSUgkNNpwMAAAD8U8l+KXdT3WI9d4tUmCG/nQ4mNKbm3KF5FympS82fzbvWTOnIYBsAAY4SHQCOxuORCnfXFOoFGVJJtlScJRX//GdJtlSSI1nups8WGi1Ft5RiUqSYn/+MbinFptaMFEnsKEXEN30uAAAAIFBVlUkHttQU63nbpdL9UtkBqSy3ZqqYsgM1fzbpQB2HFB4nRSb+8hX185+xrX8pzGNTmzATAPgXSnQAOFEeT83BcWmOVFksVZZIVcVSVenP//3zV2WJ5KqULM8vX7IkR1Ddr9BoKTRKCov++b+jf/nvsBgpPL6mNA+LMf3KAQAAAByPyuKfC/UDvyrXD0iluZKrouH7cwTVDKCJbF63LI9MlCITpCBno78EAAgklOgAAAAAAAAAANQjyHQAAAAAAAAA4ETNnz9fDodDBQUFpqMAsBlKdAAAAAAAAPiUKVOmKCYmRi6Xq3ZbSUmJQkJCNHTo0Dr3PViep6SkKCsrS3Fxccf8PBMmTNC4ceMaKTUAu6JEBwAAAAAAgE8ZNmyYSkpKtHz58tpt3333nZKTk7VkyRJVVPwyd3x6errS0tLUtWtXJScny+FwNHneqqqqJn9OAE2HEh0AAAAAAAA+pWvXrkpJSdH8+fNrt82fP19jx45V+/bt9cMPP9TZPmzYsMOmc5k2bZri4+P1+eefq3v37oqOjtaoUaOUlZUlSfr73/+u6dOna86cOXI4HHI4HLXPl5GRofHjxys+Pl4JCQkaO3asdu7cWfucB0ewP/bYY0pNTVXXrl29/SMBYBAlOgAAAAAAAHzOsGHDlJ6eXvt9enq6hg4dqiFDhtRuLy8v15IlSzRs2LAj7qOsrExPP/203nzzTS1YsEC7d+/WXXfdJUm66667NH78+NpiPSsrS2eccYaqq6s1cuRIxcTE6LvvvtP3339fW8D/esT5119/rU2bNunLL7/UJ5984sWfBADTgk0HAAAAAAAAAA41bNgwTZw4US6XS+Xl5frxxx81ZMgQVVdXa8qUKZKkxYsXq7KyUsOGDdP27dsP28fB+3bs2FGSdNttt+mRRx6RJEVHRysiIkKVlZVKTk6ufcxbb70lj8ej1157rXZqmKlTpyo+Pl7z58/XueeeK0mKiorSa6+9ptDQUK/+HACYR4kOAAAAAAAAnzN06FCVlpZq2bJlys/PV5cuXZSUlKQhQ4bommuuUUVFhebPn68OHTooLS3tiCV6ZGRkbYEuSSkpKcrJyTnq865evVpbt25VTExMne0VFRXatm1b7fe9evWiQAcCBCU6AAAAAAAAfE6nTp3UunVrpaenKz8/X0OGDJEkpaamqk2bNlq0aJHS09M1fPjwevcREhJS53uHwyHLso76vCUlJerXr59mzJhx2G1JSUm1/x0VFdWQlwPAj1GiAwAAAAAAwCcdXDA0Pz9fd999d+32wYMHa+7cuVq6dKluvvnm495/aGio3G53nW2nnHKK3n33XbVo0UKxsbHHvW8A9sHCogAAAAAAAPBJw4YN08KFC7Vq1arakeiSNGTIEL388suqqqqqd1HRY9GuXTutWbNGmzZtUm5urqqrq3XFFVeoefPmGjt2rL777jvt2LFD8+fP1x133KE9e/Y0xssC4Gco0QHY2pQpUxQTEyOXy1W7raSkRCEhIRo6dGid+86fP18Oh6POHHcAAAAAAHOGDRum8vJyderUSS1btqzdPmTIEBUXF6tr165KSUk57v1ff/316tq1q/r376+kpCR9//33ioyM1IIFC5SWlqaLLrpI3bt317XXXquKigpGpgMBymH91kRQAODHNm3apG7dumnx4sU6/fTTJUlz587VDTfcoNzcXOXn5ys8PFyS9NBDD2natGnatWtXg57Dsiy53W4FBzNDFgAAAAAAgN0wEh2ArR0clTB//vzabfPnz9fYsWPVvn17/fDDD3W2Dxs2TG+++ab69++vmJgYJScn6/LLL6+zevvBEetz585Vv379FBYWpoULF2ro0KG6/fbbNXHiRDVr1kwtW7bUq6++qtLSUl1zzTWKiYlRp06dNHfu3Kb8EQAAAAAAAOAEUKIDsL1hw4YpPT299vv09HQNHTpUQ4YMqd1eXl6uJUuWaNiwYaqurtajjz6q1atX68MPP9TOnTs1YcKEw/Z73333adKkSdqwYYN69+4tSZo+fbqaN2+upUuX6vbbb9fNN9+s3//+9zrjjDO0cuVKnXvuubryyitVVlbWJK8dAAAAAAAAJ4bpXADY3muvvaaJEyeqoKBA5eXlSkhI0N69e/XVV19pypQp+vbbb/XNN9/o7LPP1q5du5SWllbn8cuXL9epp56q4uJiRUdH145Y//DDDzV27Nja+w0dOlRut1vfffedJMntdisuLk4XXXSR3njjDUnSvn37lJKSUmd6GQAAAAAAAPguRqIDsL2hQ4eqtLRUy5Yt03fffacuXbooKSlJQ4YM0ZIlS1RRUaH58+erQ4cOSktL04oVKzRmzBilpaUpJiamdgX43bt319lv//79D3uugyPSJcnpdCoxMVG9evWq3XZwIZxfTw8DAAAAAAAA38UqeABsr1OnTmrdurXS09OVn59fW4qnpqaqTZs2WrRokdLT0zV8+HCVlpZq5MiRGjlypGbMmKGkpCTt3r1bI0eOVFVVVZ39RkVFHfZcISEhdb53OBx1tjkcDkmSx+Np7JcJAAAAAAAAL2AkOoCAMGzYMM2fP1/z58/X0KFDa7cPHjxYc+fO1dKlSzVs2DBt3LhRBw4c0KRJk3TWWWepW7dujBoHAAAAAAAIYJToAALCsGHDtHDhQq1atap2JLokDRkyRC+//LKqqqo0bNgwpaWlKTQ0VC+88IK2b9+ujz76SI8++qjB5AAAAAAAADCJEh1AQBg2bJjKy8vVqVOn2nnJpZoSvbi4WF27dlVKSoqSkpI0bdo0zZo1Sz169NCkSZP09NNPG0wOAAAAAAAAkxyWZVmmQwAAAAAAAAAA4IsYiQ4AAAAAAAAAQD0o0QEAAAAAAAAAqAclOgAAAAAAAAAA9aBEBwAAAAAAAACgHpToAAAAAAAAAADUgxIdAAAAAAAAAIB6UKIDAAAAAAAAAFAPSnQAAAAAAAAAAOpBiQ4AAAAAAAAAQD0o0QEAAAAAAAAAqAclOgAAAAAAAAAA9aBEBwAAAAAA+P/t2IEAAAAAgCB/6wk2KIwAYEh0AAAAAAAYEh0AAAAAAIZEBwAAAACAIdEBAAAAAGBIdAAAAAAAGBIdAAAAAACGRAcAAAAAgCHRAQAAAABgSHQAAAAAABgSHQAAAAAAhkQHAAAAAIAh0QEAAAAAYEh0AAAAAAAYEh0AAAAAAIZEBwAAAACAIdEBAAAAAGBIdAAAAAAAGBIdAAAAAACGRAcAAAAAgBGMFlriAAqhGAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(array([[232.81684404, 179.14242146, 151.2550065 ],\n", " [ 56.39258329, 50.61123224, 50.13707249],\n", " [161.76213056, 148.06510577, 138.44198216],\n", " [159.66418273, 114.8403329 , 94.65110157],\n", " [213.9649401 , 224.58773784, 227.47947498],\n", " [ 79.36101907, 72.43944133, 71.07109308],\n", " [208.24316215, 149.80274909, 122.8746395 ],\n", " [189.78405149, 181.83050071, 174.17050289],\n", " [105.50647599, 95.72964853, 92.78961083],\n", " [ 34.40065376, 28.55391866, 28.28026733]]),\n", " ['Warm',\n", " 'Neutral',\n", " 'Warm',\n", " 'Warm',\n", " 'Neutral',\n", " 'Neutral',\n", " 'Warm',\n", " 'Warm',\n", " 'Neutral',\n", " 'Neutral'],\n", " ['Undefined',\n", " 'Winter',\n", " 'Undefined',\n", " 'Undefined',\n", " 'Undefined',\n", " 'Winter',\n", " 'Undefined',\n", " 'Undefined',\n", " 'Winter',\n", " 'Winter'])" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Color Cluster Details:\n", "Cluster 0:\n", " RGB Color: [232.81684404 179.14242146 151.2550065 ]\n", " Undertone: Warm\n", " Seasonal Type: Undefined\n", "Cluster 1:\n", " RGB Color: [56.39258329 50.61123224 50.13707249]\n", " Undertone: Neutral\n", " Seasonal Type: Winter\n", "Cluster 2:\n", " RGB Color: [161.76213056 148.06510577 138.44198216]\n", " Undertone: Warm\n", " Seasonal Type: Undefined\n", "Cluster 3:\n", " RGB Color: [159.66418273 114.8403329 94.65110157]\n", " Undertone: Warm\n", " Seasonal Type: Undefined\n", "Cluster 4:\n", " RGB Color: [213.9649401 224.58773784 227.47947498]\n", " Undertone: Neutral\n", " Seasonal Type: Undefined\n", "Cluster 5:\n", " RGB Color: [79.36101907 72.43944133 71.07109308]\n", " Undertone: Neutral\n", " Seasonal Type: Winter\n", "Cluster 6:\n", " RGB Color: [208.24316215 149.80274909 122.8746395 ]\n", " Undertone: Warm\n", " Seasonal Type: Undefined\n", "Cluster 7:\n", " RGB Color: [189.78405149 181.83050071 174.17050289]\n", " Undertone: Warm\n", " Seasonal Type: Undefined\n", "Cluster 8:\n", " RGB Color: [105.50647599 95.72964853 92.78961083]\n", " Undertone: Neutral\n", " Seasonal Type: Winter\n", "Cluster 9:\n", " RGB Color: [34.40065376 28.55391866 28.28026733]\n", " Undertone: Neutral\n", " Seasonal Type: Winter\n" ] } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from PIL import Image\n", "import colorsys\n", "from sklearn.cluster import KMeans\n", "from sklearn.preprocessing import StandardScaler\n", "\n", "def rgb_to_hsv(rgb):\n", " \"\"\"Convert RGB to HSV color space.\"\"\"\n", " return colorsys.rgb_to_hsv(rgb[0]/255.0, rgb[1]/255.0, rgb[2]/255.0)\n", "\n", "def classify_undertone(h, s, v):\n", " \"\"\"\n", " Classify skin undertones based on HSV color space.\n", " This is a simplified approximation and should not be used for precise skin tone analysis.\n", " \"\"\"\n", " # Warm tones: more yellow/orange hues\n", " # Cool tones: more blue/purple hues\n", " # Neutral: closer to middle of hue spectrum\n", " if 0.05 <= h <= 0.15: # Warm orange-yellow range\n", " return 'Warm'\n", " elif 0.55 <= h <= 0.75: # Cool blue-purple range\n", " return 'Cool'\n", " else:\n", " return 'Neutral'\n", "\n", "def classify_seasonal_type(h, s, v):\n", " \"\"\"\n", " Classify seasonal color types based on HSV values.\n", " This is a highly simplified approximation.\n", " \"\"\"\n", " if 0.05 <= h <= 0.15 and s > 0.5 and v > 0.5:\n", " return 'Spring'\n", " elif 0.15 <= h <= 0.35 and s < 0.5 and v > 0.5:\n", " return 'Summer'\n", " elif 0.35 <= h <= 0.55 and s > 0.5 and v > 0.5:\n", " return 'Autumn'\n", " elif (h <= 0.05 or h >= 0.75) and s < 0.3 and v < 0.5:\n", " return 'Winter'\n", " else:\n", " return 'Undefined'\n", "\n", "def analyze_image_colors(image_path):\n", " \"\"\"\n", " Analyze colors in an image, create visualizations, and perform clustering.\n", " \"\"\"\n", " # Open and process the image\n", " img = Image.open(image_path)\n", " img = img.convert('RGB')\n", " \n", " # Convert image to numpy array\n", " img_array = np.array(img)\n", " \n", " # Reshape the image to be a list of pixels\n", " pixels = img_array.reshape(-1, 3)\n", " \n", " # Perform K-means clustering\n", " kmeans = KMeans(n_clusters=10, random_state=42)\n", " kmeans.fit(pixels)\n", " \n", " # Get cluster centers and labels\n", " colors = kmeans.cluster_centers_\n", " labels = kmeans.labels_\n", " \n", " # Convert RGB to HSV for further analysis\n", " hsv_colors = np.array([rgb_to_hsv(color) for color in colors])\n", " \n", " # Classify undertones and seasonal types\n", " undertones = [classify_undertone(h, s, v) for h, s, v in hsv_colors]\n", " seasonal_types = [classify_seasonal_type(h, s, v) for h, s, v in hsv_colors]\n", " \n", " # Visualizations\n", " plt.figure(figsize=(15, 10))\n", " \n", " # 1. Color Gradient Plot (Improved)\n", " plt.subplot(2, 2, 1)\n", " # Sort colors by luminance (brightness)\n", " luminance = np.dot(colors, [0.299, 0.587, 0.114])\n", " sorted_indices = np.argsort(luminance)\n", " sorted_colors = colors[sorted_indices] / 255.0\n", " \n", " # Create a gradient image\n", " gradient = np.linspace(0, 1, len(sorted_colors)).reshape(1, -1)\n", " plt.imshow(sorted_colors[np.newaxis, :], aspect='auto', extent=[0, 1, 0, 1])\n", " plt.title('Color Gradient (Sorted by Luminance)')\n", " plt.xlabel('Color Progression')\n", " plt.xticks([])\n", " plt.yticks([])\n", " \n", " # 2. Color Bar Plot\n", " plt.subplot(2, 2, 2)\n", " cluster_counts = np.unique(labels, return_counts=True)[1]\n", " plt.bar(range(len(colors)), cluster_counts, color=colors/255)\n", " plt.title('Color Distribution')\n", " plt.xlabel('Cluster')\n", " plt.ylabel('Pixel Count')\n", " \n", " # 3. Pie Chart of Undertones\n", " plt.subplot(2, 2, 3)\n", " undertone_counts = np.unique(undertones, return_counts=True)\n", " plt.pie(undertone_counts[1], labels=undertone_counts[0], autopct='%1.1f%%')\n", " plt.title('Undertone Distribution')\n", " \n", " # 4. Pie Chart of Seasonal Types\n", " plt.subplot(2, 2, 4)\n", " seasonal_counts = np.unique(seasonal_types, return_counts=True)\n", " plt.pie(seasonal_counts[1], labels=seasonal_counts[0], autopct='%1.1f%%')\n", " plt.title('Seasonal Type Distribution')\n", " \n", " plt.tight_layout()\n", " plt.show()\n", " \n", " # Print detailed color information\n", " print(\"\\nColor Cluster Details:\")\n", " for i, (color, undertone, season) in enumerate(zip(colors, undertones, seasonal_types)):\n", " print(f\"Cluster {i}:\")\n", " print(f\" RGB Color: {color}\")\n", " print(f\" Undertone: {undertone}\")\n", " print(f\" Seasonal Type: {season}\")\n", " \n", " return colors, undertones, seasonal_types\n", "\n", "# Example usage\n", "# Replace 'path/to/your/image.jpg' with the actual path to your image\n", "analyze_image_colors('./eeman.jpg')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.20" } }, "nbformat": 4, "nbformat_minor": 2 }