Spaces:
Build error
Build error
File size: 4,963 Bytes
36eb7b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import tkinter as tk
from tkinter import ttk
import cv2
import face_recognition
import numpy as np
from datetime import datetime
<<<<<<< HEAD
import os
root = tk.Tk()
root.title("Face Recognition Attendance System")
root.geometry("800x600")
video_frame = tk.Frame(root)
video_frame.pack(pady=20)
video_label = tk.Label(video_frame)
video_label.pack()
def start_video_feed():
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
faces = face_recognition.face_locations(frame)
for face in faces:
top, right, bottom, left = face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
frame = cv2.resize(frame, (800, 600))
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2RGBA)
img = Image.fromarray(frame)
imgtk = ImageTk.PhotoImage(image=img)
video_label.imgtk = imgtk
video_label.configure(image=imgtk)
video_label.update()
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def stop_video_feed():
root.quit()
start_button = ttk.Button(root, text="Start", command=start_video_feed)
start_button.pack(side=tk.LEFT, padx=10)
stop_button = ttk.Button(root, text="Stop", command=stop_video_feed)
stop_button.pack(side=tk.LEFT, padx=10)
=======
import pickle
import tkinter as tk
from PIL import Image, ImageTk
# Function to start face recognition
def start_recognition():
global is_recognizing
is_recognizing = True
# Start video capture
cap = cv2.VideoCapture(0)
while is_recognizing:
success, img = cap.read()
imgS = cv2.resize(img, (0,0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
faces_in_frame = face_recognition.face_locations(imgS)
encoded_faces = face_recognition.face_encodings(imgS, faces_in_frame)
for encode_face, faceloc in zip(encoded_faces, faces_in_frame):
matches = face_recognition.compare_faces(encoded_face_train, encode_face)
faceDist = face_recognition.face_distance(encoded_face_train, encode_face)
matchIndex = np.argmin(faceDist)
print(matchIndex)
if matches[matchIndex]:
name = classNames[matchIndex].upper().lower()
y1, x2, y2, x1 = faceloc
# since we scaled down by 4 times
y1, x2, y2, x1 = y1*4, x2*4, y2*4, x1*4
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(img, (x1, y2-35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(img, name, (x1+6, y2-5), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
markAttendance(name)
# Display the video feed
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
img = Image.fromarray(img)
imgtk = ImageTk.PhotoImage(image=img)
panel.imgtk = imgtk
panel.configure(image=imgtk)
panel.update()
cap.release()
# Function to stop face recognition
def stop_recognition():
global is_recognizing
is_recognizing = False
# Initialize tkinter window
root = tk.Tk()
root.title("Auto Attendance")
# Create a label for the title
title_label = tk.Label(root, text="Auto Attendance")
title_label.pack(pady=5)
# Create a panel to display video feed
panel = tk.Label(root)
panel.pack(padx=10, pady=10)
# Create start and stop buttons
start_button = tk.Button(root, text="Start", command=start_recognition)
start_button.pack(pady=5)
stop_button = tk.Button(root, text="Stop", command=stop_recognition)
stop_button.pack(pady=5)
# Load images and initialize variables
path = './autoattend/photos'
images = []
classNames = []
mylist = os.listdir(path)
for cl in mylist:
curImg = cv2.imread(f'{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
# Encode faces
def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encoded_face = face_recognition.face_encodings(img)[0]
encodeList.append(encoded_face)
return encodeList
encoded_face_train = findEncodings(images)
# Function to mark attendance
def markAttendance(name):
with open('./autoattend/Attendance.csv', 'r+') as f:
myDataList = f.readlines()
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
time = now.strftime('%I:%M:%S:%p')
date = now.strftime('%d-%B-%Y')
f.writelines(f'n{name}, {time}, {date}')
# Set is_recognizing flag
is_recognizing = False
>>>>>>> 75440fa3805bca07da8c622c82c716fdaef120fb
root.mainloop()
|