File size: 23,207 Bytes
47fe089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import inspect
from typing import List
import os
os.environ["KERAS_BACKEND"] = "torch"
import keras
# from keras_core import backend as K, Model, Input, optimizers
# from keras_core import backend as Model, Input, optimizers
# from keras_core import backend as K
from keras import Model
from keras import optimizers
from keras import ops as K
from keras import config as KK
from keras import layers
from keras.layers import Input, Layer, Conv1D, Dense, BatchNormalization, LayerNormalization, Activation, SpatialDropout1D, Lambda
def is_power_of_two(num: int):
return num != 0 and ((num & (num - 1)) == 0)
def adjust_dilations(dilations: list):
if all([is_power_of_two(i) for i in dilations]):
return dilations
else:
new_dilations = [2 ** i for i in dilations]
return new_dilations
class ResidualBlock(Layer):
def __init__(self,
dilation_rate: int,
nb_filters: int,
kernel_size: int,
padding: str,
activation: str = 'relu',
dropout_rate: float = 0,
kernel_initializer: str = 'he_normal',
use_batch_norm: bool = False,
use_layer_norm: bool = False,
use_weight_norm: bool = False,
**kwargs):
"""Defines the residual block for the WaveNet TCN
Args:
x: The previous layer in the model
training: boolean indicating whether the layer should behave in training mode or in inference mode
dilation_rate: The dilation power of 2 we are using for this residual block
nb_filters: The number of convolutional filters to use in this block
kernel_size: The size of the convolutional kernel
padding: The padding used in the convolutional layers, 'same' or 'causal'.
activation: The final activation used in o = Activation(x + F(x))
dropout_rate: Float between 0 and 1. Fraction of the input units to drop.
kernel_initializer: Initializer for the kernel weights matrix (Conv1D).
use_batch_norm: Whether to use batch normalization in the residual layers or not.
use_layer_norm: Whether to use layer normalization in the residual layers or not.
use_weight_norm: Whether to use weight normalization in the residual layers or not.
kwargs: Any initializers for Layer class.
"""
self.dilation_rate = dilation_rate
self.nb_filters = nb_filters
self.kernel_size = kernel_size
self.padding = padding
self.activation = activation
self.dropout_rate = dropout_rate
self.use_batch_norm = use_batch_norm
self.use_layer_norm = use_layer_norm
self.use_weight_norm = use_weight_norm
self.kernel_initializer = kernel_initializer
self.layers = []
self.shape_match_conv = None
self.res_output_shape = None
self.final_activation = None
super(ResidualBlock, self).__init__(**kwargs)
def _build_layer(self, layer):
"""Helper function for building layer
Args:
layer: Appends layer to internal layer list and builds it based on the current output
shape of ResidualBlocK. Updates current output shape.
"""
self.layers.append(layer)
self.layers[-1].build(self.res_output_shape)
self.res_output_shape = self.layers[-1].compute_output_shape(self.res_output_shape)
def build(self, input_shape):
#with K.name_scope(self.name): # name scope used to make sure weights get unique names
self.layers = []
self.res_output_shape = input_shape
for k in range(2): # dilated conv block.
name = 'conv1D_{}'.format(k)
# with K.name_scope(name): # name scope used to make sure weights get unique names
conv = Conv1D(
filters=self.nb_filters,
kernel_size=self.kernel_size,
dilation_rate=self.dilation_rate,
padding=self.padding,
name=name,
kernel_initializer=self.kernel_initializer
)
if self.use_weight_norm:
from tensorflow_addons.layers import WeightNormalization
# wrap it. WeightNormalization API is different than BatchNormalization or LayerNormalization.
#with K.name_scope('norm_{}'.format(k)):
conv = WeightNormalization(conv)
self._build_layer(conv)
#with K.name_scope('norm_{}'.format(k)):
if self.use_batch_norm:
self._build_layer(BatchNormalization())
elif self.use_layer_norm:
self._build_layer(LayerNormalization())
elif self.use_weight_norm:
pass # done above.
# with K.name_scope('act_and_dropout_{}'.format(k)):
self._build_layer(Activation(self.activation, name='Act_Conv1D_{}'.format(k)))
self._build_layer(SpatialDropout1D(rate=self.dropout_rate, name='SDropout_{}'.format(k)))
if self.nb_filters != input_shape[-1]:
# 1x1 conv to match the shapes (channel dimension).
name = 'matching_conv1D'
#with K.name_scope(name):
# make and build this layer separately because it directly uses input_shape.
# 1x1 conv.
self.shape_match_conv = Conv1D(
filters=self.nb_filters,
kernel_size=1,
padding='same',
name=name,
kernel_initializer=self.kernel_initializer
)
else:
name = 'matching_identity'
self.shape_match_conv = Lambda(lambda x: x, name=name)
#with K.name_scope(name):
self.shape_match_conv.build(input_shape)
self.res_output_shape = self.shape_match_conv.compute_output_shape(input_shape)
self._build_layer(Activation(self.activation, name='Act_Conv_Blocks'))
self.final_activation = Activation(self.activation, name='Act_Res_Block')
self.final_activation.build(self.res_output_shape) # probably isn't necessary
# this is done to force Keras to add the layers in the list to self._layers
for layer in self.layers:
self.__setattr__(layer.name, layer)
self.__setattr__(self.shape_match_conv.name, self.shape_match_conv)
self.__setattr__(self.final_activation.name, self.final_activation)
super(ResidualBlock, self).build(input_shape) # done to make sure self.built is set True
def call(self, inputs, training=None, **kwargs):
"""
Returns: A tuple where the first element is the residual model tensor, and the second
is the skip connection tensor.
"""
# https://arxiv.org/pdf/1803.01271.pdf page 4, Figure 1 (b).
# x1: Dilated Conv -> Norm -> Dropout (x2).
# x2: Residual (1x1 matching conv - optional).
# Output: x1 + x2.
# x1 -> connected to skip connections.
# x1 + x2 -> connected to the next block.
# input
# x1 x2
# conv1D 1x1 Conv1D (optional)
# ...
# conv1D
# ...
# x1 + x2
x1 = inputs
for layer in self.layers:
training_flag = 'training' in dict(inspect.signature(layer.call).parameters)
x1 = layer(x1, training=training) if training_flag else layer(x1)
x2 = self.shape_match_conv(inputs)
x1_x2 = self.final_activation(layers.add([x2, x1], name='Add_Res'))
return [x1_x2, x1]
def compute_output_shape(self, input_shape):
return [self.res_output_shape, self.res_output_shape]
class TCN(Layer):
"""Creates a TCN layer.
Input shape:
A tensor of shape (batch_size, timesteps, input_dim).
Args:
nb_filters: The number of filters to use in the convolutional layers. Can be a list.
kernel_size: The size of the kernel to use in each convolutional layer.
dilations: The list of the dilations. Example is: [1, 2, 4, 8, 16, 32, 64].
nb_stacks : The number of stacks of residual blocks to use.
padding: The padding to use in the convolutional layers, 'causal' or 'same'.
use_skip_connections: Boolean. If we want to add skip connections from input to each residual blocK.
return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence.
activation: The activation used in the residual blocks o = Activation(x + F(x)).
dropout_rate: Float between 0 and 1. Fraction of the input units to drop.
kernel_initializer: Initializer for the kernel weights matrix (Conv1D).
use_batch_norm: Whether to use batch normalization in the residual layers or not.
use_layer_norm: Whether to use layer normalization in the residual layers or not.
use_weight_norm: Whether to use weight normalization in the residual layers or not.
kwargs: Any other arguments for configuring parent class Layer. For example "name=str", Name of the model.
Use unique names when using multiple TCN.
Returns:
A TCN layer.
"""
def __init__(self,
nb_filters=256,
kernel_size=5,
nb_stacks=1,
dilations=(1, 2, 4, 8, 16, 32),
padding='causal',
use_skip_connections=True,
dropout_rate=0.0,
return_sequences=False,
activation='relu',
kernel_initializer='he_normal',
use_batch_norm=False,
use_layer_norm=False,
use_weight_norm=False,
**kwargs):
print("nb_filters:", nb_filters, "kernel_size", kernel_size)
self.return_sequences = return_sequences
self.dropout_rate = dropout_rate
self.use_skip_connections = use_skip_connections
self.dilations = dilations
self.nb_stacks = nb_stacks
self.kernel_size = kernel_size
self.nb_filters = nb_filters
self.activation_name = activation
self.padding = padding
self.kernel_initializer = kernel_initializer
self.use_batch_norm = use_batch_norm
self.use_layer_norm = use_layer_norm
self.use_weight_norm = use_weight_norm
self.skip_connections = []
self.residual_blocks = []
self.layers_outputs = []
self.build_output_shape = None
self.slicer_layer = None # in case return_sequence=False
self.output_slice_index = None # in case return_sequence=False
self.padding_same_and_time_dim_unknown = False # edge case if padding='same' and time_dim = None
if self.use_batch_norm + self.use_layer_norm + self.use_weight_norm > 1:
raise ValueError('Only one normalization can be specified at once.')
if isinstance(self.nb_filters, list):
assert len(self.nb_filters) == len(self.dilations)
if len(set(self.nb_filters)) > 1 and self.use_skip_connections:
raise ValueError('Skip connections are not compatible '
'with a list of filters, unless they are all equal.')
if padding != 'causal' and padding != 'same':
raise ValueError("Only 'causal' or 'same' padding are compatible for this layer.")
# initialize parent class
super(TCN, self).__init__(**kwargs)
@property
def receptive_field(self):
return 1 + 2 * (self.kernel_size - 1) * self.nb_stacks * sum(self.dilations)
def build(self, input_shape):
# member to hold current output shape of the layer for building purposes
self.build_output_shape = input_shape
# list to hold all the member ResidualBlocks
self.residual_blocks = []
total_num_blocks = self.nb_stacks * len(self.dilations)
if not self.use_skip_connections:
total_num_blocks += 1 # cheap way to do a false case for below
for s in range(self.nb_stacks):
for i, d in enumerate(self.dilations):
res_block_filters = self.nb_filters[i] if isinstance(self.nb_filters, list) else self.nb_filters
self.residual_blocks.append(ResidualBlock(dilation_rate=d,
nb_filters=res_block_filters,
kernel_size=self.kernel_size,
padding=self.padding,
activation=self.activation_name,
dropout_rate=self.dropout_rate,
use_batch_norm=self.use_batch_norm,
use_layer_norm=self.use_layer_norm,
use_weight_norm=self.use_weight_norm,
kernel_initializer=self.kernel_initializer,
name='residual_block_{}'.format(len(self.residual_blocks))))
# build newest residual block
self.residual_blocks[-1].build(self.build_output_shape)
self.build_output_shape = self.residual_blocks[-1].res_output_shape
# this is done to force keras to add the layers in the list to self._layers
for layer in self.residual_blocks:
self.__setattr__(layer.name, layer)
self.output_slice_index = None
if self.padding == 'same':
time = self.build_output_shape.as_list()[1]
if time is not None: # if time dimension is defined. e.g. shape = (bs, 500, input_dim).
self.output_slice_index = int(self.build_output_shape.as_list()[1] / 2)
else:
# It will known at call time. c.f. self.call.
self.padding_same_and_time_dim_unknown = True
else:
self.output_slice_index = -1 # causal case.
self.slicer_layer = Lambda(lambda tt: tt[:, self.output_slice_index, :], name='Slice_Output')
if type(self.build_output_shape) == tuple:
static = list(self.build_output_shape)
else:
static = self.build_output_shape.as_list()
self.slicer_layer.build(static)
def compute_output_shape(self, input_shape):
"""
Overridden in case keras uses it somewhere... no idea. Just trying to avoid future errors.
"""
if not self.built:
self.build(input_shape)
if not self.return_sequences:
batch_size = self.build_output_shape[0]
batch_size = batch_size.value if hasattr(batch_size, 'value') else batch_size
nb_filters = self.build_output_shape[-1]
return [batch_size, nb_filters]
else:
# Compatibility tensorflow 1.x
return [v.value if hasattr(v, 'value') else v for v in self.build_output_shape]
def call(self, inputs, training=None, **kwargs):
x = inputs
self.layers_outputs = [x]
self.skip_connections = []
for res_block in self.residual_blocks:
# try:
# x, skip_out = res_block(x, training=training)
# except TypeError: # compatibility with tensorflow 1.x
# x, skip_out = res_block(K.cast(x, 'float32'), training=training)
x, skip_out = res_block(x, training=training)
self.skip_connections.append(skip_out)
self.layers_outputs.append(x)
if self.use_skip_connections:
x = layers.add(self.skip_connections, name='Add_Skip_Connections')
self.layers_outputs.append(x)
if not self.return_sequences:
# case: time dimension is unknown. e.g. (bs, None, input_dim).
if self.padding_same_and_time_dim_unknown:
self.output_slice_index = K.shape(self.layers_outputs[-1])[1] // 2
x = self.slicer_layer(x)
self.layers_outputs.append(x)
return x
def get_config(self):
"""
Returns the config of a the layer. This is used for saving and loading from a model
:return: python dictionary with specs to rebuild layer
"""
config = super(TCN, self).get_config()
config['nb_filters'] = self.nb_filters
config['kernel_size'] = self.kernel_size
config['nb_stacks'] = self.nb_stacks
config['dilations'] = self.dilations
config['padding'] = self.padding
config['use_skip_connections'] = self.use_skip_connections
config['dropout_rate'] = self.dropout_rate
config['return_sequences'] = self.return_sequences
config['activation'] = self.activation_name
config['use_batch_norm'] = self.use_batch_norm
config['use_layer_norm'] = self.use_layer_norm
config['use_weight_norm'] = self.use_weight_norm
config['kernel_initializer'] = self.kernel_initializer
return config
def compiled_tcn(num_feat, # type: int
num_classes, # type: int
nb_filters, # type: int
kernel_size, # type: int
dilations, # type: List[int]
nb_stacks, # type: int
max_len, # type: int
output_len=1, # type: int
padding='causal', # type: str
use_skip_connections=False, # type: bool
return_sequences=True,
regression=False, # type: bool
dropout_rate=0.05, # type: float
name='tcn', # type: str,
kernel_initializer='he_normal', # type: str,
activation='relu', # type:str,
opt='adam',
lr=0.002,
use_batch_norm=False,
use_layer_norm=False,
use_weight_norm=False):
# type: (...) -> Model
"""Creates a compiled TCN model for a given task (i.e. regression or classification).
Classification uses a sparse categorical loss. Please input class ids and not one-hot encodings.
Args:
num_feat: The number of features of your input, i.e. the last dimension of: (batch_size, timesteps, input_dim).
num_classes: The size of the final dense layer, how many classes we are predicting.
nb_filters: The number of filters to use in the convolutional layers.
kernel_size: The size of the kernel to use in each convolutional layer.
dilations: The list of the dilations. Example is: [1, 2, 4, 8, 16, 32, 64].
nb_stacks : The number of stacks of residual blocks to use.
max_len: The maximum sequence length, use None if the sequence length is dynamic.
padding: The padding to use in the convolutional layers.
use_skip_connections: Boolean. If we want to add skip connections from input to each residual blocK.
return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence.
regression: Whether the output should be continuous or discrete.
dropout_rate: Float between 0 and 1. Fraction of the input units to drop.
activation: The activation used in the residual blocks o = Activation(x + F(x)).
name: Name of the model. Useful when having multiple TCN.
kernel_initializer: Initializer for the kernel weights matrix (Conv1D).
opt: Optimizer name.
lr: Learning rate.
use_batch_norm: Whether to use batch normalization in the residual layers or not.
use_layer_norm: Whether to use layer normalization in the residual layers or not.
use_weight_norm: Whether to use weight normalization in the residual layers or not.
Returns:
A compiled keras TCN.
"""
dilations = adjust_dilations(dilations)
input_layer = Input(shape=(max_len, num_feat))
x = TCN(nb_filters, kernel_size, nb_stacks, dilations, padding,
use_skip_connections, dropout_rate, return_sequences,
activation, kernel_initializer, use_batch_norm, use_layer_norm,
use_weight_norm, name=name)(input_layer)
print('x.shape=', x.shape)
def get_opt():
if opt == 'adam':
return optimizers.Adam(lr=lr, clipnorm=1.)
elif opt == 'rmsprop':
return optimizers.RMSprop(lr=lr, clipnorm=1.)
else:
raise Exception('Only Adam and RMSProp are available here')
if not regression:
# classification
print('asdasfdasfa')
x = Dense(num_classes)(x)
x = Activation('softmax')(x)
output_layer = x
model = Model(input_layer, output_layer)
# https://github.com/keras-team/keras/pull/11373
# It's now in Keras@master but still not available with pip.
# TODO remove later.
def accuracy(y_true, y_pred):
# reshape in case it's in shape (num_samples, 1) instead of (num_samples,)
if K.ndim(y_true) == K.ndim(y_pred):
y_true = K.squeeze(y_true, -1)
# convert dense predictions to labels
y_pred_labels = K.argmax(y_pred, axis=-1)
y_pred_labels = K.cast(y_pred_labels, KK.floatx())
return K.cast(K.equal(y_true, y_pred_labels), KK.floatx())
model.compile(get_opt(), loss='sparse_categorical_crossentropy', metrics=[accuracy])
else:
# regression
x = Dense(output_len)(x)
x = Activation('linear')(x)
output_layer = x
model = Model(input_layer, output_layer)
model.compile(get_opt(), loss='mean_squared_error')
print('model.x = {}'.format(input_layer.shape))
print('model.y = {}'.format(output_layer.shape))
return model
def tcn_full_summary(model: Model, expand_residual_blocks=True):
layers = model._layers.copy() # store existing layers
model._layers.clear() # clear layers
for i in range(len(layers)):
if isinstance(layers[i], TCN):
for layer in layers[i]._layers:
if not isinstance(layer, ResidualBlock):
if not hasattr(layer, '__iter__'):
model._layers.append(layer)
else:
if expand_residual_blocks:
for lyr in layer._layers:
if not hasattr(lyr, '__iter__'):
model._layers.append(lyr)
else:
model._layers.append(layer)
else:
model._layers.append(layers[i])
model.summary() # print summary
# restore original layers
model._layers.clear()
[model._layers.append(lyr) for lyr in layers] |