Update app.py
Browse files
app.py
CHANGED
@@ -64,6 +64,7 @@ with open(r'labels.txt', 'r') as fp:
|
|
64 |
|
65 |
colormap = np.asarray(ade_palette())
|
66 |
|
|
|
67 |
def label_to_color_image(label):
|
68 |
if label.ndim != 2:
|
69 |
raise ValueError("Expect 2-D input label")
|
@@ -71,8 +72,8 @@ def label_to_color_image(label):
|
|
71 |
if np.max(label) >= len(colormap):
|
72 |
raise ValueError("label value too large.")
|
73 |
return colormap[label]
|
74 |
-
|
75 |
-
def draw_plot(pred_img, seg
|
76 |
fig = plt.figure(figsize=(20, 15))
|
77 |
|
78 |
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
@@ -80,8 +81,53 @@ def draw_plot(pred_img, seg, show_seg=False):
|
|
80 |
plt.subplot(grid_spec[0])
|
81 |
plt.imshow(pred_img)
|
82 |
plt.axis('off')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
if show_seg:
|
85 |
-
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
86 |
-
ax = plt.subplot(grid_spec[1])
|
87 |
|
|
|
64 |
|
65 |
colormap = np.asarray(ade_palette())
|
66 |
|
67 |
+
|
68 |
def label_to_color_image(label):
|
69 |
if label.ndim != 2:
|
70 |
raise ValueError("Expect 2-D input label")
|
|
|
72 |
if np.max(label) >= len(colormap):
|
73 |
raise ValueError("label value too large.")
|
74 |
return colormap[label]
|
75 |
+
|
76 |
+
def draw_plot(pred_img, seg):
|
77 |
fig = plt.figure(figsize=(20, 15))
|
78 |
|
79 |
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
|
|
81 |
plt.subplot(grid_spec[0])
|
82 |
plt.imshow(pred_img)
|
83 |
plt.axis('off')
|
84 |
+
LABEL_NAMES = np.asarray(labels_list)
|
85 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
86 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
87 |
+
|
88 |
+
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
89 |
+
ax = plt.subplot(grid_spec[1])
|
90 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
91 |
+
ax.yaxis.tick_right()
|
92 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
93 |
+
plt.xticks([], [])
|
94 |
+
ax.tick_params(width=0.0, labelsize=25)
|
95 |
+
return fig
|
96 |
+
|
97 |
+
|
98 |
+
def sepia(input_img):
|
99 |
+
input_img = Image.fromarray(input_img)
|
100 |
+
|
101 |
+
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
102 |
+
outputs = model(**inputs)
|
103 |
+
logits = outputs.logits
|
104 |
+
|
105 |
+
logits = tf.transpose(logits, [0, 2, 3, 1])
|
106 |
+
logits = tf.image.resize(
|
107 |
+
logits, input_img.size[::-1]
|
108 |
+
) # We reverse the shape of `image` because `image.size` returns width and height.
|
109 |
+
seg = tf.math.argmax(logits, axis=-1)[0]
|
110 |
+
|
111 |
+
color_seg = np.zeros(
|
112 |
+
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
113 |
+
) # height, width, 3
|
114 |
+
for label, color in enumerate(colormap):
|
115 |
+
color_seg[seg.numpy() == label, :] = color
|
116 |
+
|
117 |
+
# Show image + mask
|
118 |
+
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
119 |
+
pred_img = pred_img.astype(np.uint8)
|
120 |
+
|
121 |
+
fig = draw_plot(pred_img, seg)
|
122 |
+
return fig
|
123 |
+
|
124 |
+
demo = gr.Interface(fn=sepia,
|
125 |
+
inputs=gr.Image(shape=(400, 600)),
|
126 |
+
outputs=['plot'],
|
127 |
+
examples=["side-1.jpg", "side-2.jpg", "side-3.jpg", "side-4.jpg"],
|
128 |
+
allow_flagging='never')
|
129 |
+
|
130 |
+
|
131 |
+
demo.launch()
|
132 |
|
|
|
|
|
|
|
133 |
|