Spaces:
Sleeping
Sleeping
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torchvision | |
from torch import nn, Tensor | |
from torchvision import ops | |
from torchvision.transforms import functional as F, InterpolationMode, transforms as T | |
def _flip_coco_person_keypoints(kps, width): | |
flip_inds = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] | |
flipped_data = kps[:, flip_inds] | |
flipped_data[..., 0] = width - flipped_data[..., 0] | |
# Maintain COCO convention that if visibility == 0, then x, y = 0 | |
inds = flipped_data[..., 2] == 0 | |
flipped_data[inds] = 0 | |
return flipped_data | |
class Compose: | |
def __init__(self, transforms): | |
self.transforms = transforms | |
def __call__(self, image, target): | |
for t in self.transforms: | |
image, target = t(image, target) | |
return image, target | |
class ToTensor(object): | |
def __call__(self, image, target): | |
image = F.to_tensor(image) | |
return image, target | |
class RandomHorizontalFlip(T.RandomHorizontalFlip): | |
def forward( | |
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
if torch.rand(1) < self.p: | |
image = F.hflip(image) | |
if target is not None: | |
_, _, width = F.get_dimensions(image) | |
target["boxes"][:, [0, 2]] = width - target["boxes"][:, [2, 0]] | |
if "masks" in target: | |
target["masks"] = target["masks"].flip(-1) | |
if "keypoints" in target: | |
keypoints = target["keypoints"] | |
keypoints = _flip_coco_person_keypoints(keypoints, width) | |
target["keypoints"] = keypoints | |
return image, target | |
class PILToTensor(nn.Module): | |
def forward( | |
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
image = F.pil_to_tensor(image) | |
return image, target | |
class ConvertImageDtype(nn.Module): | |
def __init__(self, dtype: torch.dtype) -> None: | |
super().__init__() | |
self.dtype = dtype | |
def forward( | |
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
image = F.convert_image_dtype(image, self.dtype) | |
return image, target | |
class RandomIoUCrop(nn.Module): | |
def __init__( | |
self, | |
min_scale: float = 0.3, | |
max_scale: float = 1.0, | |
min_aspect_ratio: float = 0.5, | |
max_aspect_ratio: float = 2.0, | |
sampler_options: Optional[List[float]] = None, | |
trials: int = 40, | |
): | |
super().__init__() | |
# Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174 | |
self.min_scale = min_scale | |
self.max_scale = max_scale | |
self.min_aspect_ratio = min_aspect_ratio | |
self.max_aspect_ratio = max_aspect_ratio | |
if sampler_options is None: | |
sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] | |
self.options = sampler_options | |
self.trials = trials | |
def forward( | |
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
if target is None: | |
raise ValueError("The targets can't be None for this transform.") | |
if isinstance(image, torch.Tensor): | |
if image.ndimension() not in {2, 3}: | |
raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.") | |
elif image.ndimension() == 2: | |
image = image.unsqueeze(0) | |
_, orig_h, orig_w = F.get_dimensions(image) | |
while True: | |
# sample an option | |
idx = int(torch.randint(low=0, high=len(self.options), size=(1,))) | |
min_jaccard_overlap = self.options[idx] | |
if min_jaccard_overlap >= 1.0: # a value larger than 1 encodes the leave as-is option | |
return image, target | |
for _ in range(self.trials): | |
# check the aspect ratio limitations | |
r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2) | |
new_w = int(orig_w * r[0]) | |
new_h = int(orig_h * r[1]) | |
aspect_ratio = new_w / new_h | |
if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio): | |
continue | |
# check for 0 area crops | |
r = torch.rand(2) | |
left = int((orig_w - new_w) * r[0]) | |
top = int((orig_h - new_h) * r[1]) | |
right = left + new_w | |
bottom = top + new_h | |
if left == right or top == bottom: | |
continue | |
# check for any valid boxes with centers within the crop area | |
cx = 0.5 * (target["boxes"][:, 0] + target["boxes"][:, 2]) | |
cy = 0.5 * (target["boxes"][:, 1] + target["boxes"][:, 3]) | |
is_within_crop_area = (left < cx) & (cx < right) & (top < cy) & (cy < bottom) | |
if not is_within_crop_area.any(): | |
continue | |
# check at least 1 box with jaccard limitations | |
boxes = target["boxes"][is_within_crop_area] | |
ious = torchvision.ops.boxes.box_iou( | |
boxes, torch.tensor([[left, top, right, bottom]], dtype=boxes.dtype, device=boxes.device) | |
) | |
if ious.max() < min_jaccard_overlap: | |
continue | |
# keep only valid boxes and perform cropping | |
target["boxes"] = boxes | |
target["labels"] = target["labels"][is_within_crop_area] | |
target["boxes"][:, 0::2] -= left | |
target["boxes"][:, 1::2] -= top | |
target["boxes"][:, 0::2].clamp_(min=0, max=new_w) | |
target["boxes"][:, 1::2].clamp_(min=0, max=new_h) | |
image = F.crop(image, top, left, new_h, new_w) | |
return image, target | |
class RandomZoomOut(nn.Module): | |
def __init__( | |
self, fill: Optional[List[float]] = None, side_range: Tuple[float, float] = (1.0, 4.0), p: float = 0.5 | |
): | |
super().__init__() | |
if fill is None: | |
fill = [0.0, 0.0, 0.0] | |
self.fill = fill | |
self.side_range = side_range | |
if side_range[0] < 1.0 or side_range[0] > side_range[1]: | |
raise ValueError(f"Invalid canvas side range provided {side_range}.") | |
self.p = p | |
def _get_fill_value(self, is_pil): | |
# type: (bool) -> int | |
# We fake the type to make it work on JIT | |
return tuple(int(x) for x in self.fill) if is_pil else 0 | |
def forward( | |
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
if isinstance(image, torch.Tensor): | |
if image.ndimension() not in {2, 3}: | |
raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.") | |
elif image.ndimension() == 2: | |
image = image.unsqueeze(0) | |
if torch.rand(1) >= self.p: | |
return image, target | |
_, orig_h, orig_w = F.get_dimensions(image) | |
r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0]) | |
canvas_width = int(orig_w * r) | |
canvas_height = int(orig_h * r) | |
r = torch.rand(2) | |
left = int((canvas_width - orig_w) * r[0]) | |
top = int((canvas_height - orig_h) * r[1]) | |
right = canvas_width - (left + orig_w) | |
bottom = canvas_height - (top + orig_h) | |
if torch.jit.is_scripting(): | |
fill = 0 | |
else: | |
fill = self._get_fill_value(F._is_pil_image(image)) | |
image = F.pad(image, [left, top, right, bottom], fill=fill) | |
if isinstance(image, torch.Tensor): | |
# PyTorch's pad supports only integers on fill. So we need to overwrite the colour | |
v = torch.tensor(self.fill, device=image.device, dtype=image.dtype).view(-1, 1, 1) | |
image[..., :top, :] = image[..., :, :left] = image[..., (top + orig_h) :, :] = image[ | |
..., :, (left + orig_w) : | |
] = v | |
if target is not None: | |
target["boxes"][:, 0::2] += left | |
target["boxes"][:, 1::2] += top | |
return image, target | |
class RandomPhotometricDistort(nn.Module): | |
def __init__( | |
self, | |
contrast: Tuple[float, float] = (0.5, 1.5), | |
saturation: Tuple[float, float] = (0.5, 1.5), | |
hue: Tuple[float, float] = (-0.05, 0.05), | |
brightness: Tuple[float, float] = (0.875, 1.125), | |
p: float = 0.5, | |
): | |
super().__init__() | |
self._brightness = T.ColorJitter(brightness=brightness) | |
self._contrast = T.ColorJitter(contrast=contrast) | |
self._hue = T.ColorJitter(hue=hue) | |
self._saturation = T.ColorJitter(saturation=saturation) | |
self.p = p | |
def forward( | |
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
if isinstance(image, torch.Tensor): | |
if image.ndimension() not in {2, 3}: | |
raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.") | |
elif image.ndimension() == 2: | |
image = image.unsqueeze(0) | |
r = torch.rand(7) | |
if r[0] < self.p: | |
image = self._brightness(image) | |
contrast_before = r[1] < 0.5 | |
if contrast_before: | |
if r[2] < self.p: | |
image = self._contrast(image) | |
if r[3] < self.p: | |
image = self._saturation(image) | |
if r[4] < self.p: | |
image = self._hue(image) | |
if not contrast_before: | |
if r[5] < self.p: | |
image = self._contrast(image) | |
if r[6] < self.p: | |
channels, _, _ = F.get_dimensions(image) | |
permutation = torch.randperm(channels) | |
is_pil = F._is_pil_image(image) | |
if is_pil: | |
image = F.pil_to_tensor(image) | |
image = F.convert_image_dtype(image) | |
image = image[..., permutation, :, :] | |
if is_pil: | |
image = F.to_pil_image(image) | |
return image, target | |
class ScaleJitter(nn.Module): | |
"""Randomly resizes the image and its bounding boxes within the specified scale range. | |
The class implements the Scale Jitter augmentation as described in the paper | |
`"Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation" <https://arxiv.org/abs/2012.07177>`_. | |
Args: | |
target_size (tuple of ints): The target size for the transform provided in (height, weight) format. | |
scale_range (tuple of ints): scaling factor interval, e.g (a, b), then scale is randomly sampled from the | |
range a <= scale <= b. | |
interpolation (InterpolationMode): Desired interpolation enum defined by | |
:class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``. | |
""" | |
def __init__( | |
self, | |
target_size: Tuple[int, int], | |
scale_range: Tuple[float, float] = (0.1, 2.0), | |
interpolation: InterpolationMode = InterpolationMode.BILINEAR, | |
): | |
super().__init__() | |
self.target_size = target_size | |
self.scale_range = scale_range | |
self.interpolation = interpolation | |
def forward( | |
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
if isinstance(image, torch.Tensor): | |
if image.ndimension() not in {2, 3}: | |
raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.") | |
elif image.ndimension() == 2: | |
image = image.unsqueeze(0) | |
_, orig_height, orig_width = F.get_dimensions(image) | |
scale = self.scale_range[0] + torch.rand(1) * (self.scale_range[1] - self.scale_range[0]) | |
r = min(self.target_size[1] / orig_height, self.target_size[0] / orig_width) * scale | |
new_width = int(orig_width * r) | |
new_height = int(orig_height * r) | |
image = F.resize(image, [new_height, new_width], interpolation=self.interpolation) | |
if target is not None: | |
target["boxes"][:, 0::2] *= new_width / orig_width | |
target["boxes"][:, 1::2] *= new_height / orig_height | |
if "masks" in target: | |
target["masks"] = F.resize( | |
target["masks"], [new_height, new_width], interpolation=InterpolationMode.NEAREST | |
) | |
return image, target | |
class FixedSizeCrop(nn.Module): | |
def __init__(self, size, fill=0, padding_mode="constant"): | |
super().__init__() | |
size = tuple(T._setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")) | |
self.crop_height = size[0] | |
self.crop_width = size[1] | |
self.fill = fill # TODO: Fill is currently respected only on PIL. Apply tensor patch. | |
self.padding_mode = padding_mode | |
def _pad(self, img, target, padding): | |
# Taken from the functional_tensor.py pad | |
if isinstance(padding, int): | |
pad_left = pad_right = pad_top = pad_bottom = padding | |
elif len(padding) == 1: | |
pad_left = pad_right = pad_top = pad_bottom = padding[0] | |
elif len(padding) == 2: | |
pad_left = pad_right = padding[0] | |
pad_top = pad_bottom = padding[1] | |
else: | |
pad_left = padding[0] | |
pad_top = padding[1] | |
pad_right = padding[2] | |
pad_bottom = padding[3] | |
padding = [pad_left, pad_top, pad_right, pad_bottom] | |
img = F.pad(img, padding, self.fill, self.padding_mode) | |
if target is not None: | |
target["boxes"][:, 0::2] += pad_left | |
target["boxes"][:, 1::2] += pad_top | |
if "masks" in target: | |
target["masks"] = F.pad(target["masks"], padding, 0, "constant") | |
return img, target | |
def _crop(self, img, target, top, left, height, width): | |
img = F.crop(img, top, left, height, width) | |
if target is not None: | |
boxes = target["boxes"] | |
boxes[:, 0::2] -= left | |
boxes[:, 1::2] -= top | |
boxes[:, 0::2].clamp_(min=0, max=width) | |
boxes[:, 1::2].clamp_(min=0, max=height) | |
is_valid = (boxes[:, 0] < boxes[:, 2]) & (boxes[:, 1] < boxes[:, 3]) | |
target["boxes"] = boxes[is_valid] | |
target["labels"] = target["labels"][is_valid] | |
if "masks" in target: | |
target["masks"] = F.crop(target["masks"][is_valid], top, left, height, width) | |
return img, target | |
def forward(self, img, target=None): | |
_, height, width = F.get_dimensions(img) | |
new_height = min(height, self.crop_height) | |
new_width = min(width, self.crop_width) | |
if new_height != height or new_width != width: | |
offset_height = max(height - self.crop_height, 0) | |
offset_width = max(width - self.crop_width, 0) | |
r = torch.rand(1) | |
top = int(offset_height * r) | |
left = int(offset_width * r) | |
img, target = self._crop(img, target, top, left, new_height, new_width) | |
pad_bottom = max(self.crop_height - new_height, 0) | |
pad_right = max(self.crop_width - new_width, 0) | |
if pad_bottom != 0 or pad_right != 0: | |
img, target = self._pad(img, target, [0, 0, pad_right, pad_bottom]) | |
return img, target | |
class RandomShortestSize(nn.Module): | |
def __init__( | |
self, | |
min_size: Union[List[int], Tuple[int], int], | |
max_size: int, | |
interpolation: InterpolationMode = InterpolationMode.BILINEAR, | |
): | |
super().__init__() | |
self.min_size = [min_size] if isinstance(min_size, int) else list(min_size) | |
self.max_size = max_size | |
self.interpolation = interpolation | |
def forward( | |
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
_, orig_height, orig_width = F.get_dimensions(image) | |
min_size = self.min_size[torch.randint(len(self.min_size), (1,)).item()] | |
r = min(min_size / min(orig_height, orig_width), self.max_size / max(orig_height, orig_width)) | |
new_width = int(orig_width * r) | |
new_height = int(orig_height * r) | |
image = F.resize(image, [new_height, new_width], interpolation=self.interpolation) | |
if target is not None: | |
target["boxes"][:, 0::2] *= new_width / orig_width | |
target["boxes"][:, 1::2] *= new_height / orig_height | |
if "masks" in target: | |
target["masks"] = F.resize( | |
target["masks"], [new_height, new_width], interpolation=InterpolationMode.NEAREST | |
) | |
return image, target | |
def _copy_paste( | |
image: torch.Tensor, | |
target: Dict[str, Tensor], | |
paste_image: torch.Tensor, | |
paste_target: Dict[str, Tensor], | |
blending: bool = True, | |
resize_interpolation: F.InterpolationMode = F.InterpolationMode.BILINEAR, | |
) -> Tuple[torch.Tensor, Dict[str, Tensor]]: | |
# Random paste targets selection: | |
num_masks = len(paste_target["masks"]) | |
if num_masks < 1: | |
# Such degerante case with num_masks=0 can happen with LSJ | |
# Let's just return (image, target) | |
return image, target | |
# We have to please torch script by explicitly specifying dtype as torch.long | |
random_selection = torch.randint(0, num_masks, (num_masks,), device=paste_image.device) | |
random_selection = torch.unique(random_selection).to(torch.long) | |
paste_masks = paste_target["masks"][random_selection] | |
paste_boxes = paste_target["boxes"][random_selection] | |
paste_labels = paste_target["labels"][random_selection] | |
masks = target["masks"] | |
# We resize source and paste data if they have different sizes | |
# This is something we introduced here as originally the algorithm works | |
# on equal-sized data (for example, coming from LSJ data augmentations) | |
size1 = image.shape[-2:] | |
size2 = paste_image.shape[-2:] | |
if size1 != size2: | |
paste_image = F.resize(paste_image, size1, interpolation=resize_interpolation) | |
paste_masks = F.resize(paste_masks, size1, interpolation=F.InterpolationMode.NEAREST) | |
# resize bboxes: | |
ratios = torch.tensor((size1[1] / size2[1], size1[0] / size2[0]), device=paste_boxes.device) | |
paste_boxes = paste_boxes.view(-1, 2, 2).mul(ratios).view(paste_boxes.shape) | |
paste_alpha_mask = paste_masks.sum(dim=0) > 0 | |
if blending: | |
paste_alpha_mask = F.gaussian_blur( | |
paste_alpha_mask.unsqueeze(0), | |
kernel_size=(5, 5), | |
sigma=[ | |
2.0, | |
], | |
) | |
# Copy-paste images: | |
image = (image * (~paste_alpha_mask)) + (paste_image * paste_alpha_mask) | |
# Copy-paste masks: | |
masks = masks * (~paste_alpha_mask) | |
non_all_zero_masks = masks.sum((-1, -2)) > 0 | |
masks = masks[non_all_zero_masks] | |
# Do a shallow copy of the target dict | |
out_target = {k: v for k, v in target.items()} | |
out_target["masks"] = torch.cat([masks, paste_masks]) | |
# Copy-paste boxes and labels | |
boxes = ops.masks_to_boxes(masks) | |
out_target["boxes"] = torch.cat([boxes, paste_boxes]) | |
labels = target["labels"][non_all_zero_masks] | |
out_target["labels"] = torch.cat([labels, paste_labels]) | |
# Update additional optional keys: area and iscrowd if exist | |
if "area" in target: | |
out_target["area"] = out_target["masks"].sum((-1, -2)).to(torch.float32) | |
if "iscrowd" in target and "iscrowd" in paste_target: | |
# target['iscrowd'] size can be differ from mask size (non_all_zero_masks) | |
# For example, if previous transforms geometrically modifies masks/boxes/labels but | |
# does not update "iscrowd" | |
if len(target["iscrowd"]) == len(non_all_zero_masks): | |
iscrowd = target["iscrowd"][non_all_zero_masks] | |
paste_iscrowd = paste_target["iscrowd"][random_selection] | |
out_target["iscrowd"] = torch.cat([iscrowd, paste_iscrowd]) | |
# Check for degenerated boxes and remove them | |
boxes = out_target["boxes"] | |
degenerate_boxes = boxes[:, 2:] <= boxes[:, :2] | |
if degenerate_boxes.any(): | |
valid_targets = ~degenerate_boxes.any(dim=1) | |
out_target["boxes"] = boxes[valid_targets] | |
out_target["masks"] = out_target["masks"][valid_targets] | |
out_target["labels"] = out_target["labels"][valid_targets] | |
if "area" in out_target: | |
out_target["area"] = out_target["area"][valid_targets] | |
if "iscrowd" in out_target and len(out_target["iscrowd"]) == len(valid_targets): | |
out_target["iscrowd"] = out_target["iscrowd"][valid_targets] | |
return image, out_target | |
class SimpleCopyPaste(torch.nn.Module): | |
def __init__(self, blending=True, resize_interpolation=F.InterpolationMode.BILINEAR): | |
super().__init__() | |
self.resize_interpolation = resize_interpolation | |
self.blending = blending | |
def forward( | |
self, images: List[torch.Tensor], targets: List[Dict[str, Tensor]] | |
) -> Tuple[List[torch.Tensor], List[Dict[str, Tensor]]]: | |
torch._assert( | |
isinstance(images, (list, tuple)) and all([isinstance(v, torch.Tensor) for v in images]), | |
"images should be a list of tensors", | |
) | |
torch._assert( | |
isinstance(targets, (list, tuple)) and len(images) == len(targets), | |
"targets should be a list of the same size as images", | |
) | |
for target in targets: | |
# Can not check for instance type dict with inside torch.jit.script | |
# torch._assert(isinstance(target, dict), "targets item should be a dict") | |
for k in ["masks", "boxes", "labels"]: | |
torch._assert(k in target, f"Key {k} should be present in targets") | |
torch._assert(isinstance(target[k], torch.Tensor), f"Value for the key {k} should be a tensor") | |
# images = [t1, t2, ..., tN] | |
# Let's define paste_images as shifted list of input images | |
# paste_images = [t2, t3, ..., tN, t1] | |
# FYI: in TF they mix data on the dataset level | |
images_rolled = images[-1:] + images[:-1] | |
targets_rolled = targets[-1:] + targets[:-1] | |
output_images: List[torch.Tensor] = [] | |
output_targets: List[Dict[str, Tensor]] = [] | |
for image, target, paste_image, paste_target in zip(images, targets, images_rolled, targets_rolled): | |
output_image, output_data = _copy_paste( | |
image, | |
target, | |
paste_image, | |
paste_target, | |
blending=self.blending, | |
resize_interpolation=self.resize_interpolation, | |
) | |
output_images.append(output_image) | |
output_targets.append(output_data) | |
return output_images, output_targets | |
def __repr__(self) -> str: | |
s = f"{self.__class__.__name__}(blending={self.blending}, resize_interpolation={self.resize_interpolation})" | |
return s |