--- license: apache-2.0 language: - en base_model: - mradermacher/oh-dcft-v3.1-claude-3-5-sonnet-20241022-GGUF - openai/whisper-large-v3-turbo pipeline_tag: memory-management inference_api: true title: Adaptive Memory Architecture (AMA) description: > A biomimetic, multi-tier memory management system designed to revolutionize how AI systems process, store, and retrieve information. Featuring dynamic semantic embedding, intelligent relationship tracking, and adaptive memory compression. key_features: - Multi-tier memory management - Semantic embedding integration - Dynamic relationship inference - Intelligent memory compression - Contextually aware information processing technical_details: memory_tiers: - volatile_short_term: capacity: 10 items characteristics: - High-speed access - Recent interactions - Cache-like implementation - persistent_long_term: capacity: unlimited characteristics: - Important concept storage - Hierarchical knowledge representation - context_working_memory: capacity: 5 items characteristics: - Current conversation state - Active task parameters performance_metrics: retrieval_speed: O(log n) semantic_similarity_calculation: cosine distance memory_compression_ratio: adaptive research_potential: - Neuromorphic memory modeling - Adaptive learning systems - Cognitive architecture development ethical_considerations: - Transparent memory tracking - Configurable confidence scoring - Relationship type inference usage: - python - memory_manager = MemoryManager() - memory_manager.insert("AI ethics are crucial") - results = memory_manager.retrieve("ethical AI") --- class AdvancedMemoryManager { constructor(config = {}) { // Configurable embedding models this.embeddingModels = { default: new SemanticEmbedding(), multilingual: new MultilingualEmbedding(), specialized: { text: new TextSpecificEmbedding(), numerical: new NumericalEmbedding() } }; // Adaptive pruning configuration this.pruningConfig = { strategies: [ 'temporal_decay', 'importance_score', 'relationship_density' ], thresholds: { maxMemorySize: config.maxMemorySize || 10000, compressionTrigger: config.compressionTrigger || 0.8 } }; // Advanced indexing for efficient retrieval this.semanticIndex = new ApproximateNearestNeighborIndex(); } async selectOptimalEmbeddingModel(content) { // Dynamically select most appropriate embedding model if (this.isMultilingualContent(content)) { return this.embeddingModels.multilingual; } if (this.isNumericalContent(content)) { return this.embeddingModels.specialized.numerical; } return this.embeddingModels.default; } async insert(content, options = {}) { const embeddingModel = await this.selectOptimalEmbeddingModel(content); const memoryItem = new MemoryItem(content, { ...options, embeddingModel }); // Advanced indexing and relationship tracking this.semanticIndex.add(memoryItem); this.trackRelationships(memoryItem); return memoryItem; } async intelligentRetrieve(query, options = {}) { const { maxResults = 10, similarityThreshold = 0.7, includeRelated = true } = options; // Semantic and relationship-aware retrieval const semanticResults = this.semanticIndex.search(query, { maxResults, threshold: similarityThreshold }); if (includeRelated) { return this.expandWithRelatedMemories(semanticResults); } return semanticResults; } async performMemoryCompression() { const compressionCandidates = this.identifyCompressionCandidates(); const compressedMemories = compressionCandidates.map(this.compressMemory); return { originalCount: compressionCandidates.length, compressedCount: compressedMemories.length, compressionRatio: compressedMemories.length / compressionCandidates.length }; } } const natural = require('natural'); const tf = require('@tensorflow/tfjs-node'); const { Word2Vec } = require('word2vec'); class SemanticEmbedding { constructor() { this.model = null; this.vectorSize = 100; } async initialize() { // Placeholder for more advanced embedding initialization this.model = await tf.loadLayersModel('path/to/embedding/model'); } async generateEmbedding(text) { // Generate semantic vector representation const tokens = natural.tokenize(text.toLowerCase()); const embedding = await this.model.predict(tokens); return embedding; } calculateSemanticSimilarity(embedding1, embedding2) { // Cosine similarity calculation return tf.losses.cosineDistance(embedding1, embedding2); } } class MemoryItem { constructor(content, { type = "text", isFactual = 0.5, source = null, confidence = 0.5 } = {}) { this.id = crypto.randomUUID(); // Unique identifier this.content = content; this.type = type; this.isFactual = isFactual; this.confidence = confidence; this.source = source; this.timestamp = Date.now(); this.accessCount = 0; this.importance = 5; this.embedding = null; this.related = new Map(); // Enhanced relationship tracking this.tags = new Set(); } async computeEmbedding(embeddingService) { this.embedding = await embeddingService.generateEmbedding(this.content); } addRelationship(memoryItem, weight = 1.0) { this.related.set(memoryItem.id, { memory: memoryItem, weight: weight, type: this.determineRelationshipType(memoryItem) }); } determineRelationshipType(memoryItem) { // Semantic relationship type inference const semanticDistance = this.calculateSemanticDistance(memoryItem); if (semanticDistance < 0.2) return 'VERY_CLOSE'; if (semanticDistance < 0.5) return 'RELATED'; return 'DISTANT'; } calculateSemanticDistance(memoryItem) { // Placeholder for semantic distance calculation return Math.random(); // Replace with actual embedding comparison } incrementAccess() { this.accessCount++; this.updateImportance(); } updateImportance() { // Dynamic importance calculation this.importance = Math.min( 10, 5 + Math.log(this.accessCount + 1) ); } } class MemoryTier { constructor(name, { maxCapacity = Infinity, pruneStrategy = 'LRU' } = {}) { this.name = name; this.items = new Map(); // Use Map for efficient lookups this.maxCapacity = maxCapacity; this.pruneStrategy = pruneStrategy; } insert(memoryItem) { if (this.items.size >= this.maxCapacity) { this.prune(); } this.items.set(memoryItem.id, memoryItem); } prune() { switch(this.pruneStrategy) { case 'LRU': const lruItem = Array.from(this.items.values()) .sort((a, b) => a.timestamp - b.timestamp)[0]; this.items.delete(lruItem.id); break; case 'LEAST_IMPORTANT': const leastImportant = Array.from(this.items.values()) .sort((a, b) => a.importance - b.importance)[0]; this.items.delete(leastImportant.id); break; } } async retrieve(query, embeddingService, topK = 5) { const queryEmbedding = await embeddingService.generateEmbedding(query); const scoredResults = Array.from(this.items.values()) .map(item => ({ memory: item, similarity: embeddingService.calculateSemanticSimilarity( item.embedding, queryEmbedding ) })) .sort((a, b) => b.similarity - a.similarity) .slice(0, topK); return scoredResults.map(r => r.memory); } } class MemoryManager { constructor() { this.embeddingService = new SemanticEmbedding(); this.volatileShortTerm = new MemoryTier("Volatile Short-Term", { maxCapacity: 10, pruneStrategy: 'LRU' }); this.persistentLongTerm = new MemoryTier("Persistent Long-Term"); this.contextWorkingMemory = new MemoryTier("Context/Working Memory", { maxCapacity: 5 }); this.allMemories = new Map(); } async initialize() { await this.embeddingService.initialize(); } async insert(content, options = {}) { const memoryItem = new MemoryItem(content, options); await memoryItem.computeEmbedding(this.embeddingService); // Insert into all appropriate tiers this.volatileShortTerm.insert(memoryItem); this.persistentLongTerm.insert(memoryItem); this.contextWorkingMemory.insert(memoryItem); this.allMemories.set(memoryItem.id, memoryItem); return memoryItem; } async retrieve(query, tier = null) { if (tier) { return tier.retrieve(query, this.embeddingService); } // Parallel retrieval across tiers const results = await Promise.all([ this.volatileShortTerm.retrieve(query, this.embeddingService), this.persistentLongTerm.retrieve(query, this.embeddingService), this.contextWorkingMemory.retrieve(query, this.embeddingService) ]); // Flatten and deduplicate results return [...new Set(results.flat())]; } async findSemanticallySimilar(memoryItem, threshold = 0.7) { const similar = []; for (let [, memory] of this.allMemories) { if (memory.id !== memoryItem.id) { const similarity = this.embeddingService.calculateSemanticSimilarity( memory.embedding, memoryItem.embedding ); if (similarity >= threshold) { similar.push({ memory, similarity }); } } } return similar.sort((a, b) => b.similarity - a.similarity); } } // Example Usage async function demonstrateMemorySystem() { const memoryManager = new MemoryManager(); await memoryManager.initialize(); // Insert memories const aiEthicsMem = await memoryManager.insert( "AI should be developed with strong ethical considerations", { type: "concept", isFactual: 0.9, confidence: 0.8 } ); const aiResearchMem = await memoryManager.insert( "Machine learning research is advancing rapidly", { type: "research", isFactual: 0.95 } ); // Create relationships aiEthicsMem.addRelationship(aiResearchMem); // Retrieve memories const retrievedMemories = await memoryManager.retrieve("AI ethics"); console.log("Retrieved Memories:", retrievedMemories); // Find semantically similar memories const similarMemories = await memoryManager.findSemanticallySimilar(aiEthicsMem); console.log("Similar Memories:", similarMemories); } demonstrateMemorySystem(); module.exports = { MemoryManager, MemoryItem, MemoryTier }; class AdvancedMemoryManager { constructor(config = {}) { // Configurable embedding models this.embeddingModels = { default: new SemanticEmbedding(), multilingual: new MultilingualEmbedding(), specialized: { text: new TextSpecificEmbedding(), numerical: new NumericalEmbedding() } }; // Adaptive pruning configuration this.pruningConfig = { strategies: [ 'temporal_decay', 'importance_score', 'relationship_density' ], thresholds: { maxMemorySize: config.maxMemorySize || 10000, compressionTrigger: config.compressionTrigger || 0.8 } }; // Advanced indexing for efficient retrieval this.semanticIndex = new ApproximateNearestNeighborIndex(); } async selectOptimalEmbeddingModel(content) { // Dynamically select most appropriate embedding model if (this.isMultilingualContent(content)) { return this.embeddingModels.multilingual; } if (this.isNumericalContent(content)) { return this.embeddingModels.specialized.numerical; } return this.embeddingModels.default; } async insert(content, options = {}) { const embeddingModel = await this.selectOptimalEmbeddingModel(content); const memoryItem = new MemoryItem(content, { ...options, embeddingModel }); // Advanced indexing and relationship tracking this.semanticIndex.add(memoryItem); this.trackRelationships(memoryItem); return memoryItem; } async intelligentRetrieve(query, options = {}) { const { maxResults = 10, similarityThreshold = 0.7, includeRelated = true } = options; // Semantic and relationship-aware retrieval const semanticResults = this.semanticIndex.search(query, { maxResults, threshold: similarityThreshold }); if (includeRelated) { return this.expandWithRelatedMemories(semanticResults); } return semanticResults; } async performMemoryCompression() { const compressionCandidates = this.identifyCompressionCandidates(); const compressedMemories = compressionCandidates.map(this.compressMemory); return { originalCount: compressionCandidates.length, compressedCount: compressedMemories.length, compressionRatio: compressedMemories.length / compressionCandidates.length }; } } class MemoryTracer { constructor() { this.generationLog = new Map(); // Track memory generation lineage this.redundancyMap = new Map(); // Track potential redundant memories this.compressionMetrics = { totalMemories: 0, uniqueMemories: 0, redundancyRate: 0, compressionPotential: 0 }; } trackGeneration(memoryItem, parentMemories = []) { // Create a generation trace const generationEntry = { id: memoryItem.id, timestamp: Date.now(), content: memoryItem.content, parents: parentMemories.map(m => m.id), lineage: [ ...parentMemories.flatMap(p => this.generationLog.get(p.id)?.lineage || [] ), memoryItem.id ] }; this.generationLog.set(memoryItem.id, generationEntry); this.updateRedundancyMetrics(memoryItem); } updateRedundancyMetrics(memoryItem) { // Semantic similarity check for redundancy const similarityThreshold = 0.9; let redundancyCount = 0; for (let [, existingMemory] of this.redundancyMap) { const similarity = this.calculateSemanticSimilarity( existingMemory.content, memoryItem.content ); if (similarity >= similarityThreshold) { redundancyCount++; this.redundancyMap.set(memoryItem.id, { memory: memoryItem, similarTo: existingMemory.id, similarity: similarity }); } } // Update compression metrics this.compressionMetrics.totalMemories++; this.compressionMetrics.redundancyRate = (redundancyCount / this.compressionMetrics.totalMemories); this.compressionMetrics.compressionPotential = this.calculateCompressionPotential(); } calculateSemanticSimilarity(content1, content2) { // Placeholder for semantic similarity calculation // In a real implementation, use embedding-based similarity const words1 = new Set(content1.toLowerCase().split(/\s+/)); const words2 = new Set(content2.toLowerCase().split(/\s+/)); const intersection = new Set( [...words1].filter(x => words2.has(x)) ); return intersection.size / Math.max(words1.size, words2.size); } calculateCompressionPotential() { // Advanced compression potential calculation const { totalMemories, redundancyRate } = this.compressionMetrics; // Exponential decay of compression potential return Math.min(1, Math.exp(-redundancyRate) * (1 - 1 / (1 + totalMemories))); } compressMemories(memoryManager) { const compressibleMemories = []; // Identify memories for potential compression for (let [id, redundancyEntry] of this.redundancyMap) { if (redundancyEntry.similarity >= 0.9) { compressibleMemories.push({ id: id, similarTo: redundancyEntry.similarTo, similarity: redundancyEntry.similarity }); } } // Compression strategy const compressionStrategy = (memories) => { // Group similar memories const memoryGroups = new Map(); memories.forEach(memoryInfo => { const groupKey = memoryInfo.similarTo; if (!memoryGroups.has(groupKey)) { memoryGroups.set(groupKey, []); } memoryGroups.get(groupKey).push(memoryInfo); }); // Merge similar memory groups const mergedMemories = []; for (let [baseId, group] of memoryGroups) { const baseMemory = memoryManager.allMemories.get(baseId); // Create a compressed representation const compressedContent = this.createCompressedContent( group.map(g => memoryManager.allMemories.get(g.id).content ) ); // Create a new compressed memory item const compressedMemory = new MemoryItem(compressedContent, { type: baseMemory.type, isFactual: baseMemory.isFactual, confidence: Math.max(...group.map(g => memoryManager.allMemories.get(g.id).confidence )) }); mergedMemories.push(compressedMemory); } return mergedMemories; }; // Execute compression const compressedMemories = compressionStrategy(compressibleMemories); // Update memory manager compressedMemories.forEach(memory => { memoryManager.insert(memory); }); // Log compression results console.log('Memory Compression Report:', { totalCompressed: compressibleMemories.length, compressionPotential: this.compressionMetrics.compressionPotential }); return compressedMemories; } createCompressedContent(contents) { // Intelligently combine similar memory contents const uniqueWords = new Set( contents.flatMap(content => content.toLowerCase().split(/\s+/) ) ); // Create a concise summary return Array.from(uniqueWords).slice(0, 20).join(' '); } } // Modify MemoryManager to incorporate tracing class MemoryManager { constructor() { // ... existing constructor code ... this.memoryTracer = new MemoryTracer(); } async insert(content, options = {}, parentMemories = []) { const memoryItem = new MemoryItem(content, options); // Compute embedding and trace generation await memoryItem.computeEmbedding(this.embeddingService); this.memoryTracer.trackGeneration(memoryItem, parentMemories); // ... existing insertion code ... return memoryItem; } performMemoryCompression() { return this.memoryTracer.compressMemories(this); } } const crypto = require('crypto'); class MemoryItem { constructor(content, options = {}) { this.id = crypto.randomUUID(); this.content = content; this.type = options.type || 'text'; this.isFactual = options.isFactual || 0.5; this.confidence = options.confidence || 0.5; this.timestamp = Date.now(); this.accessCount = 0; this.importance = 5; this.embedding = null; this.related = new Map(); this.tags = new Set(); } addRelationship(memoryItem, weight = 1.0) { this.related.set(memoryItem.id, { memory: memoryItem, weight: weight, type: this.determineRelationshipType(memoryItem) }); } determineRelationshipType(memoryItem) { // Basic relationship type inference const content1 = this.content.toLowerCase(); const content2 = memoryItem.content.toLowerCase(); const sharedWords = content1.split(' ') .filter(word => content2.includes(word)); const similarityRatio = sharedWords.length / Math.max(content1.split(' ').length, content2.split(' ').length); if (similarityRatio > 0.5) return 'VERY_CLOSE'; if (similarityRatio > 0.2) return 'RELATED'; return 'DISTANT'; } incrementAccess() { this.accessCount++; this.updateImportance(); } updateImportance() { // Dynamic importance calculation this.importance = Math.min( 10, 5 + Math.log(this.accessCount + 1) ); } } module.exports = MemoryItem; class MemoryTier { constructor(name, options = {}) { this.name = name; this.items = new Map(); this.maxCapacity = options.maxCapacity || Infinity; this.pruneStrategy = options.pruneStrategy || 'LRU'; } insert(memoryItem) { if (this.items.size >= this.maxCapacity) { this.prune(); } this.items.set(memoryItem.id, memoryItem); } prune() { switch(this.pruneStrategy) { case 'LRU': const oldestItem = Array.from(this.items.values()) .sort((a, b) => a.timestamp - b.timestamp)[0]; this.items.delete(oldestItem.id); break; case 'LEAST_IMPORTANT': const leastImportant = Array.from(this.items.values()) .sort((a, b) => a.importance - b.importance)[0]; this.items.delete(leastImportant.id); break; } } retrieve(query) { return Array.from(this.items.values()) .filter(item => item.content.includes(query)); } } module.exports = MemoryTier; const MemoryItem = require('./memory-item'); const MemoryTier = require('./memory-tier'); const SemanticEmbedding = require('./semantic-embedding'); class MemoryManager { constructor(config = {}) { this.embeddingService = new SemanticEmbedding(); this.tiers = { volatileShortTerm: new MemoryTier('Volatile Short-Term', { maxCapacity: config.shortTermCapacity || 10 }), persistentLongTerm: new MemoryTier('Persistent Long-Term'), contextWorkingMemory: new MemoryTier('Context/Working Memory', { maxCapacity: config.workingMemoryCapacity || 5 }) }; this.allMemories = new Map(); } async insert(content, options = {}) { const memoryItem = new MemoryItem(content, options); // Insert into all tiers Object.values(this.tiers).forEach(tier => { tier.insert(memoryItem); }); this.allMemories.set(memoryItem.id, memoryItem); return memoryItem; } async retrieve(query) { // Aggregate results from all tiers const results = Object.values(this.tiers) .flatMap(tier => tier.retrieve(query)); // Deduplicate and sort by importance return [...new Set(results)] .sort((a, b) => b.importance - a.importance); } async findSemanticallySimilar(memoryItem, threshold = 0.7) { const similar = []; for (let [, memory] of this.allMemories) { if (memory.id !== memoryItem.id) { const similarity = this.calculateSemanticSimilarity( memory.content, memoryItem.content ); if (similarity >= threshold) { similar.push({ memory, similarity }); } } } return similar.sort((a, b) => b.similarity - a.similarity); } calculateSemanticSimilarity(content1, content2) { // Simple similarity calculation const words1 = new Set(content1.toLowerCase().split(/\s+/)); const words2 = new Set(content2.toLowerCase().split(/\s+/)); const intersection = new Set( [...words1].filter(x => words2.has(x)) ); return intersection.size / Math.max(words1.size, words2.size); } } module.exports = MemoryManager; class SemanticEmbedding { constructor() { this.embeddingCache = new Map(); } async generateEmbedding(text) { // Check cache first if (this.embeddingCache.has(text)) { return this.embeddingCache.get(text); } // Simple embedding generation const tokens = text.toLowerCase().split(/\s+/); const embedding = tokens.map(token => this.simpleTokenEmbedding(token)); // Cache the embedding this.embeddingCache.set(text, embedding); return embedding; } simpleTokenEmbedding(token) { // Very basic embedding - just a numerical representation return token.split('').map(char => char.charCodeAt(0)); } calculateSemanticSimilarity(embedding1, embedding2) { // Cosine similarity approximation const dotProduct = embedding1.reduce( (sum, val, i) => sum + val * (embedding2[i] || 0), 0 ); const magnitude1 = Math.sqrt( embedding1.reduce((sum, val) => sum + val * val, 0) ); const magnitude2 = Math.sqrt( embedding2.reduce((sum, val) => sum + val * val, 0) ); return dotProduct / (magnitude1 * magnitude2); } }