DrishtiSharma commited on
Commit
78a31d7
Β·
verified Β·
1 Parent(s): 07ebffb

Delete mylab/visual_insights_section.py

Browse files
Files changed (1) hide show
  1. mylab/visual_insights_section.py +0 -252
mylab/visual_insights_section.py DELETED
@@ -1,252 +0,0 @@
1
- import streamlit as st
2
- import pandas as pd
3
- import sqlite3
4
- import os
5
- import json
6
- from pathlib import Path
7
- import plotly.express as px
8
- from datetime import datetime, timezone
9
- from crewai import Agent, Crew, Process, Task
10
- from crewai.tools import tool
11
- from langchain_groq import ChatGroq
12
- from langchain_openai import ChatOpenAI
13
- from langchain.schema.output import LLMResult
14
- from langchain_community.tools.sql_database.tool import (
15
- InfoSQLDatabaseTool,
16
- ListSQLDatabaseTool,
17
- QuerySQLCheckerTool,
18
- QuerySQLDataBaseTool,
19
- )
20
- from langchain_community.utilities.sql_database import SQLDatabase
21
- from datasets import load_dataset
22
- import tempfile
23
-
24
- st.title("SQL-RAG Using CrewAI πŸš€")
25
- st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
26
-
27
- # Initialize LLM
28
- llm = None
29
-
30
- # Model Selection
31
- model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
32
-
33
- # API Key Validation and LLM Initialization
34
- groq_api_key = os.getenv("GROQ_API_KEY")
35
- openai_api_key = os.getenv("OPENAI_API_KEY")
36
-
37
- if model_choice == "llama-3.3-70b":
38
- if not groq_api_key:
39
- st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
40
- llm = None
41
- else:
42
- llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
43
- elif model_choice == "GPT-4o":
44
- if not openai_api_key:
45
- st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
46
- llm = None
47
- else:
48
- llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
49
-
50
- # Initialize session state for data persistence
51
- if "df" not in st.session_state:
52
- st.session_state.df = None
53
- if "show_preview" not in st.session_state:
54
- st.session_state.show_preview = False
55
-
56
- # Dataset Input
57
- input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
58
-
59
- if input_option == "Use Hugging Face Dataset":
60
- dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
61
- if st.button("Load Dataset"):
62
- try:
63
- with st.spinner("Loading dataset..."):
64
- dataset = load_dataset(dataset_name, split="train")
65
- st.session_state.df = pd.DataFrame(dataset)
66
- st.session_state.show_preview = True # Show preview after loading
67
- st.success(f"Dataset '{dataset_name}' loaded successfully!")
68
- except Exception as e:
69
- st.error(f"Error: {e}")
70
-
71
- elif input_option == "Upload CSV File":
72
- uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
73
- if uploaded_file:
74
- try:
75
- st.session_state.df = pd.read_csv(uploaded_file)
76
- st.session_state.show_preview = True # Show preview after loading
77
- st.success("File uploaded successfully!")
78
- except Exception as e:
79
- st.error(f"Error loading file: {e}")
80
-
81
- # Show Dataset Preview Only After Loading
82
- if st.session_state.df is not None and st.session_state.show_preview:
83
- st.subheader("πŸ“‚ Dataset Preview")
84
- st.dataframe(st.session_state.df.head())
85
-
86
- # SQL-RAG Analysis
87
- if st.session_state.df is not None:
88
- temp_dir = tempfile.TemporaryDirectory()
89
- db_path = os.path.join(temp_dir.name, "data.db")
90
- connection = sqlite3.connect(db_path)
91
- st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
92
- db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
93
-
94
- @tool("list_tables")
95
- def list_tables() -> str:
96
- """List all tables in the database."""
97
- return ListSQLDatabaseTool(db=db).invoke("")
98
-
99
- @tool("tables_schema")
100
- def tables_schema(tables: str) -> str:
101
- """Get the schema and sample rows for the specified tables."""
102
- return InfoSQLDatabaseTool(db=db).invoke(tables)
103
-
104
- @tool("execute_sql")
105
- def execute_sql(sql_query: str) -> str:
106
- """Execute a SQL query against the database and return the results."""
107
- return QuerySQLDataBaseTool(db=db).invoke(sql_query)
108
-
109
- @tool("check_sql")
110
- def check_sql(sql_query: str) -> str:
111
- """Validate the SQL query syntax and structure before execution."""
112
- return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
113
-
114
- sql_dev = Agent(
115
- role="Senior Database Developer",
116
- goal="Extract data using optimized SQL queries.",
117
- backstory="An expert in writing optimized SQL queries for complex databases.",
118
- llm=llm,
119
- tools=[list_tables, tables_schema, execute_sql, check_sql],
120
- )
121
-
122
- data_analyst = Agent(
123
- role="Senior Data Analyst",
124
- goal="Analyze the data and produce insights.",
125
- backstory="A seasoned analyst who identifies trends and patterns in datasets.",
126
- llm=llm,
127
- )
128
-
129
- report_writer = Agent(
130
- role="Technical Report Writer",
131
- goal="Summarize the insights into a clear report.",
132
- backstory="An expert in summarizing data insights into readable reports.",
133
- llm=llm,
134
- )
135
-
136
- extract_data = Task(
137
- description="Extract data based on the query: {query}.",
138
- expected_output="Database results matching the query.",
139
- agent=sql_dev,
140
- )
141
-
142
- analyze_data = Task(
143
- description="Analyze the extracted data for query: {query}.",
144
- expected_output="Analysis text summarizing findings.",
145
- agent=data_analyst,
146
- context=[extract_data],
147
- )
148
-
149
- write_report = Task(
150
- description="Summarize the analysis into an executive report.",
151
- expected_output="Markdown report of insights.",
152
- agent=report_writer,
153
- context=[analyze_data],
154
- )
155
-
156
- crew = Crew(
157
- agents=[sql_dev, data_analyst, report_writer],
158
- tasks=[extract_data, analyze_data, write_report],
159
- process=Process.sequential,
160
- verbose=True,
161
- )
162
-
163
- # Tabs for Query Results and General Insights
164
- tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])
165
-
166
- # Tab 1: Query-Insights + Visualization
167
- with tab1:
168
- query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
169
- if st.button("Submit Query"):
170
- with st.spinner("Processing query..."):
171
- inputs = {"query": query}
172
- result = crew.kickoff(inputs=inputs)
173
-
174
- st.markdown("### Analysis Report:")
175
-
176
- # Collect all generated visualizations
177
- visualizations = []
178
-
179
- # Salary Visualization
180
- if "salary" in query.lower():
181
- fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
182
- title="Salary Distribution by Job Title")
183
- visualizations.append(fig_salary)
184
-
185
- # Experience Level Visualization
186
- fig_experience = px.bar(
187
- st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
188
- x="experience_level", y="salary_in_usd",
189
- title="Average Salary by Experience Level"
190
- )
191
- visualizations.append(fig_experience)
192
-
193
- # Employment Type Visualization
194
- fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
195
- title="Salary Distribution by Employment Type")
196
- visualizations.append(fig_employment)
197
-
198
- # Insert Visual Insights before Conclusion
199
- insert_section = "## Conclusion"
200
- if insert_section in result:
201
- parts = result.split(insert_section)
202
- st.markdown(parts[0]) # Show content before Conclusion
203
-
204
- # Insert Visual Insights Section BEFORE Conclusion
205
- st.markdown("## πŸ“Š Visual Insights")
206
- for fig in visualizations:
207
- st.plotly_chart(fig, use_container_width=True)
208
-
209
- # Show the Conclusion after Visual Insights
210
- st.markdown(insert_section + parts[1])
211
- else:
212
- st.markdown(result)
213
- st.markdown("## πŸ“Š Visual Insights")
214
- for fig in visualizations:
215
- st.plotly_chart(fig, use_container_width=True)
216
-
217
- # Tab 2: Full Data Visualization
218
- with tab2:
219
- st.subheader("πŸ“Š Comprehensive Data Visualizations")
220
-
221
- fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
222
- st.plotly_chart(fig1)
223
-
224
- fig2 = px.bar(
225
- st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
226
- x="experience_level", y="salary_in_usd",
227
- title="Average Salary by Experience Level"
228
- )
229
- st.plotly_chart(fig2)
230
-
231
- fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
232
- title="Salary Distribution by Employment Type")
233
- st.plotly_chart(fig3)
234
-
235
- if "company_size" in st.session_state.df.columns:
236
- fig4 = px.box(st.session_state.df, x="company_size", y="salary_in_usd",
237
- title="Salary Distribution by Company Size")
238
- st.plotly_chart(fig4)
239
-
240
- if "region" in st.session_state.df.columns:
241
- fig5 = px.box(st.session_state.df, x="region", y="salary_in_usd",
242
- title="Salary Distribution by Region")
243
- st.plotly_chart(fig5)
244
-
245
- temp_dir.cleanup()
246
- else:
247
- st.info("Please load a dataset to proceed.")
248
-
249
- # Sidebar Reference
250
- with st.sidebar:
251
- st.header("πŸ“š Reference:")
252
- st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")