patentability / app.py
DrishtiSharma's picture
Update app.py
a1ef31a verified
raw
history blame
5.7 kB
import streamlit as st
import pandas as pd
import sqlite3
import os
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
st.title("Blah Blah App πŸš€")
st.write("Analyze datasets using natural language queries.")
# LLM Initialization
def initialize_llm(model_choice):
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing.")
return None
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing.")
return None
return ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
llm = initialize_llm(model_choice)
# Dataset Loading
def load_dataset_into_session():
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
if st.button("Load Dataset"):
try:
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
st.session_state.df = pd.DataFrame(dataset)
st.success(f"Dataset '{dataset_name}' loaded successfully!")
st.dataframe(st.session_state.df.head())
except Exception as e:
st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
st.session_state.df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
st.dataframe(st.session_state.df.head())
if "df" not in st.session_state:
st.session_state.df = None
load_dataset_into_session()
# Database Initialization
def initialize_database(df):
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "patent_data.db")
connection = sqlite3.connect(db_path)
df.to_sql("patents", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
return db, temp_dir
# SQL Tools
def create_sql_tools(db):
@tool("list_tables")
def list_tables() -> str:
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
return list_tables, tables_schema, execute_sql
# Agent Initialization
def initialize_agents(llm, tools):
list_tables, tables_schema, execute_sql = tools
sql_agent = Agent(
role="Patent Data Analyst",
goal="Extract patent data using optimized SQL queries.",
backstory="Expert in optimized SQL for patent databases.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql],
)
analyst_agent = Agent(
role="Patent Data Analyst",
goal="Analyze the data and produce insights.",
backstory="Data analyst identifying trends.",
llm=llm,
)
writer_agent = Agent(
role="Patent Report Writer",
goal="Summarize patent insights into a report.",
backstory="Expert in clear, concise reporting.",
llm=llm,
)
return sql_agent, analyst_agent, writer_agent
# Crew and Tasks Setup
def setup_crew(sql_agent, analyst_agent, writer_agent):
extract_task = Task(
description="Extract patents related to the query: {query}.",
expected_output="Patent data matching the query.",
agent=sql_agent,
)
analyze_task = Task(
description="Analyze the extracted patent data.",
expected_output="Analysis text summarizing findings.",
agent=analyst_agent,
context=[extract_task],
)
report_task = Task(
description="Summarize analysis into a report.",
expected_output="Markdown report of insights.",
agent=writer_agent,
context=[analyze_task],
)
return Crew(
agents=[sql_agent, analyst_agent, writer_agent],
tasks=[extract_task, analyze_task, report_task],
process=Process.sequential,
verbose=True,
)
# Execution Flow
if st.session_state.df is not None:
db, temp_dir = initialize_database(st.session_state.df)
tools = create_sql_tools(db)
sql_agent, analyst_agent, writer_agent = initialize_agents(llm, tools)
crew = setup_crew(sql_agent, analyst_agent, writer_agent)
query = st.text_area("Enter Patent Analysis Query:", placeholder="e.g., 'How many patents related to Machine Learning were filed after 2016?'")
if st.button("Submit Query"):
with st.spinner("Processing your query..."):
result = crew.kickoff(inputs={"query": query})
st.markdown("### πŸ“Š Patent Analysis Report")
st.markdown(result)
else:
st.info("Please load a patent dataset to proceed.")