File size: 6,656 Bytes
739d571
d77fbbb
739d571
 
 
 
 
 
 
2e95a3a
739d571
 
 
 
 
 
 
 
2e95a3a
739d571
 
 
c0f8ffc
739d571
d4e5d68
 
 
 
739d571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0f8ffc
739d571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e95a3a
739d571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import os
import chromadb
import streamlit as st
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain_community.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import StateGraph, END
from langchain_core.documents import Document
from typing import Annotated, Sequence, TypedDict
import functools
import operator
from langchain_core.tools import tool


# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()

# Load environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")

if not OPENAI_API_KEY or not TAVILY_API_KEY:
    st.error("Please set OPENAI_API_KEY and TAVILY_API_KEY in your environment variables.")
    st.stop()

# Initialize API keys and LLM
llm = ChatOpenAI(model="gpt-4-1106-preview", openai_api_key=OPENAI_API_KEY)

# Utility Functions
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
    prompt = ChatPromptTemplate.from_messages([
        ("system", system_prompt),
        MessagesPlaceholder(variable_name="messages"),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ])
    agent = create_openai_tools_agent(llm, tools, prompt)
    return AgentExecutor(agent=agent, tools=tools)

def agent_node(state, agent, name):
    result = agent.invoke(state)
    return {"messages": [HumanMessage(content=result["output"], name=name)]}

@tool
def RAG(state):
    """Use this tool to execute RAG. If the question is related to Japan or Sports, this tool retrieves the results."""
    st.session_state.outputs.append('-> Calling RAG ->')
    question = state
    template = """Answer the question based only on the following context:\n{context}\nQuestion: {question}"""
    prompt = ChatPromptTemplate.from_template(template)
    retrieval_chain = (
        {"context": retriever, "question": RunnablePassthrough()} |
        prompt |
        llm |
        StrOutputParser()
    )
    result = retrieval_chain.invoke(question)
    return result

# Load Tools and Retriever
tavily_tool = TavilySearchResults(max_results=5, tavily_api_key=TAVILY_API_KEY)
python_repl_tool = PythonREPLTool()

# File Upload Section
st.title("Multi-Agent Workflow Demonstration")
uploaded_files = st.file_uploader("Upload your source files (TXT)", accept_multiple_files=True, type=['txt'])

if uploaded_files:
    docs = []
    for uploaded_file in uploaded_files:
        content = uploaded_file.read().decode("utf-8")
        docs.append(Document(page_content=content, metadata={"name": uploaded_file.name}))
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10, length_function=len)
    new_docs = text_splitter.split_documents(documents=docs)
    embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-base-en-v1.5", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
    db = Chroma.from_documents(new_docs, embeddings)
    retriever = db.as_retriever(search_kwargs={"k": 4})
else:
    retriever = None
    st.warning("Please upload at least one text file to proceed.")
    st.stop()

# Create Agents
research_agent = create_agent(llm, [tavily_tool], "You are a web researcher.")
code_agent = create_agent(llm, [python_repl_tool], "You may generate safe python code to analyze data and generate charts using matplotlib.")
RAG_agent = create_agent(llm, [RAG], "Use this tool when questions are related to Japan or Sports category.")

research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
code_node = functools.partial(agent_node, agent=code_agent, name="Coder")
rag_node = functools.partial(agent_node, agent=RAG_agent, name="RAG")

members = ["RAG", "Researcher", "Coder"]
system_prompt = (
    "You are a supervisor managing these workers: {members}. Respond with the next worker or FINISH. "
    "Use RAG tool for Japan or Sports questions."
)
options = ["FINISH"] + members
function_def = {
    "name": "route", "description": "Select the next role.",
    "parameters": {
        "title": "routeSchema", "type": "object",
        "properties": {"next": {"anyOf": [{"enum": options}]}}, "required": ["next"]
    }
}
prompt = ChatPromptTemplate.from_messages([
    ("system", system_prompt),
    MessagesPlaceholder(variable_name="messages"),
    ("system", "Given the conversation above, who should act next? Select one of: {options}"),
]).partial(options=str(options), members=", ".join(members))

supervisor_chain = (prompt | llm.bind_functions(functions=[function_def], function_call="route") | JsonOutputFunctionsParser())

# Build Workflow
class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

workflow = StateGraph(AgentState)
workflow.add_node("Researcher", research_node)
workflow.add_node("Coder", code_node)
workflow.add_node("RAG", rag_node)
workflow.add_node("supervisor", supervisor_chain)

for member in members:
    workflow.add_edge(member, "supervisor")
conditional_map = {k: k for k in members}
conditional_map["FINISH"] = END
workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)
workflow.set_entry_point("supervisor")
graph = workflow.compile()

# Streamlit UI
if 'outputs' not in st.session_state:
    st.session_state.outputs = []

user_input = st.text_area("Enter your task or question:")

def run_workflow(task):
    st.session_state.outputs.clear()
    st.session_state.outputs.append(f"User Input: {task}")
    for state in graph.stream({"messages": [HumanMessage(content=task)]}):
        if "__end__" not in state:
            st.session_state.outputs.append(str(state))
            st.session_state.outputs.append("----")

if st.button("Run Workflow"):
    if user_input:
        run_workflow(user_input)
    else:
        st.warning("Please enter a task or question.")

st.subheader("Workflow Output:")
for output in st.session_state.outputs:
    st.text(output)