import json import pickle import random import nltk import numpy as np import tflearn import gradio as gr import requests import time from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.chrome.options import Options from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import torch import pandas as pd import os import chromedriver_autoinstaller from nltk.tokenize import word_tokenize from nltk.stem.lancaster import LancasterStemmer # Ensure necessary NLTK resources are downloaded nltk.download('punkt') # Initialize the stemmer stemmer = LancasterStemmer() # Load intents.json try: with open("intents.json") as file: data = json.load(file) except FileNotFoundError: raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.") # Load preprocessed data from pickle try: with open("data.pickle", "rb") as f: words, labels, training, output = pickle.load(f) except FileNotFoundError: raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.") # Build the model structure net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) # Load the trained model model = tflearn.DNN(net) try: model.load("MentalHealthChatBotmodel.tflearn") except FileNotFoundError: raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.") # Function to process user input into a bag-of-words format def bag_of_words(s, words): bag = [0 for _ in range(len(words))] s_words = word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return np.array(bag) # Chat function def chat(message, history): history = history or [] message = message.lower() try: # Predict the tag results = model.predict([bag_of_words(message, words)]) results_index = np.argmax(results) tag = labels[results_index] # Match tag with intent and choose a random response for tg in data["intents"]: if tg['tag'] == tag: responses = tg['responses'] response = random.choice(responses) break else: response = "I'm sorry, I didn't understand that. Could you please rephrase?" except Exception as e: response = f"An error occurred: {str(e)}" history.append((message, response)) return history, history # Sentiment analysis setup tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") # Emotion detection setup @st.cache_resource def load_emotion_model(): tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") return tokenizer, model tokenizer_emotion, model_emotion = load_emotion_model() # Google Places API setup for wellness professionals url = "https://maps.googleapis.com/maps/api/place/textsearch/json" places_details_url = "https://maps.googleapis.com/maps/api/place/details/json" api_key = "GOOGLE_API_KEY" # Install Chrome and Chromedriver for web scraping def install_chrome_and_driver(): os.system("apt-get update") os.system("apt-get install -y wget curl") os.system("wget -q https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb") os.system("dpkg -i google-chrome-stable_current_amd64.deb") os.system("apt-get install -y -f") os.system("google-chrome-stable --version") chromedriver_autoinstaller.install() install_chrome_and_driver() # Function to get places data using Google Places API def get_places_data(query, location, radius, api_key, next_page_token=None): params = { "query": query, "location": location, "radius": radius, "key": api_key } if next_page_token: params["pagetoken"] = next_page_token response = requests.get(url, params=params) if response.status_code == 200: return response.json() else: return None # Main function to fetch wellness professional data and display on map def get_wellness_professionals(location): query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath" radius = 50000 # 50 km radius data = get_places_data(query, location, radius, api_key) if data: results = data.get('results', []) wellness_data = [] for place in results: name = place.get("name") address = place.get("formatted_address") latitude = place.get("geometry", {}).get("location", {}).get("lat") longitude = place.get("geometry", {}).get("location", {}).get("lng") wellness_data.append([name, address, latitude, longitude]) return wellness_data return [] # Gradio interface setup for user interaction def user_interface(message, location, history): history, history = chat(message, history) # Sentiment analysis inputs = tokenizer_sentiment(message, return_tensors="pt") outputs = model_sentiment(**inputs) sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(outputs.logits, dim=1).item()] # Emotion detection pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) emotion_result = pipe(message) emotion = emotion_result[0]['label'] # Get wellness professionals wellness_data = get_wellness_professionals(location) return history, history, sentiment, emotion, wellness_data # Gradio chatbot interface chatbot = gr.Chatbot(label="Mental Health Chatbot") location_input = gr.Textbox(label="Enter your location (latitude,longitude)", placeholder="e.g., 21.3,-157.8") # Gradio interface definition demo = gr.Interface( user_interface, [gr.Textbox(label="Message"), location_input, "state"], [chatbot, "state", "text", "text", "json"], allow_flagging="never", title="Mental Health & Well-being Assistant" ) # Launch Gradio interface if __name__ == "__main__": demo.launch()