import json import pickle import random import nltk import numpy as np import tflearn import gradio as gr import requests import torch import pandas as pd from bs4 import BeautifulSoup from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline from nltk.tokenize import word_tokenize from nltk.stem.lancaster import LancasterStemmer import os # Ensure necessary NLTK resources are downloaded nltk.download('punkt') # Initialize the stemmer stemmer = LancasterStemmer() # Load intents.json try: with open("intents.json") as file: data = json.load(file) except FileNotFoundError: raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.") # Load preprocessed data from pickle try: with open("data.pickle", "rb") as f: words, labels, training, output = pickle.load(f) except FileNotFoundError: raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.") # Build the model structure net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) # Load the trained model model = tflearn.DNN(net) try: model.load("MentalHealthChatBotmodel.tflearn") except FileNotFoundError: raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.") # Function to process user input into a bag-of-words format def bag_of_words(s, words): bag = [0 for _ in range(len(words))] s_words = word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return np.array(bag) # Chat function def chat(message, history): history = history or [] message = message.lower() try: # Predict the tag results = model.predict([bag_of_words(message, words)]) results_index = np.argmax(results) tag = labels[results_index] # Match tag with intent and choose a random response for tg in data["intents"]: if tg['tag'] == tag: responses = tg['responses'] response = random.choice(responses) break else: response = "I'm sorry, I didn't understand that. Could you please rephrase?" except Exception as e: response = f"An error occurred: {str(e)}" history.append((message, response)) return history, history # Sentiment analysis setup tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") # Emotion detection setup def load_emotion_model(): tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") return tokenizer, model tokenizer_emotion, model_emotion = load_emotion_model() # Google Places API setup for wellness professionals url = "https://maps.googleapis.com/maps/api/place/textsearch/json" places_details_url = "https://maps.googleapis.com/maps/api/place/details/json" api_key = os.getenv("GOOGLE_API_KEY") # Use environment variable for security # Function to get places data using Google Places API def get_places_data(query, location, radius, api_key, next_page_token=None): params = { "query": query, "location": location, "radius": radius, "key": api_key } if next_page_token: params["pagetoken"] = next_page_token response = requests.get(url, params=params) if response.status_code == 200: return response.json() else: return None # Web scraping function to get wellness professional data (alternative to API) def scrape_wellness_professionals(query, location): # User-Agent header to simulate a browser request headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" } search_url = f"https://www.google.com/search?q={query}+near+{location}" # Make a request to the search URL with headers response = requests.get(search_url, headers=headers) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') # Parse and extract wellness professionals from the HTML wellness_data = [] results = soup.find_all("div", class_="BVG0Nb") # Adjust class based on the actual HTML structure for result in results: name = result.get_text() link = result.find("a")["href"] if result.find("a") else None wellness_data.append([name, link]) return wellness_data else: return [] # Main function to fetch wellness professional data and display on map def get_wellness_professionals(location): query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath" radius = 50000 # 50 km radius # Using Google Places API if available data = get_places_data(query, location, radius, api_key) if data: results = data.get('results', []) wellness_data = [] for place in results: name = place.get("name") address = place.get("formatted_address") latitude = place.get("geometry", {}).get("location", {}).get("lat") longitude = place.get("geometry", {}).get("location", {}).get("lng") wellness_data.append([name, address, latitude, longitude]) return wellness_data # Fallback to scraping if API is not available or fails return scrape_wellness_professionals(query, location) # Gradio interface setup for user interaction def user_interface(message, location, history): history, history = chat(message, history) # Sentiment analysis inputs = tokenizer_sentiment(message, return_tensors="pt") outputs = model_sentiment(**inputs) sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(outputs.logits, dim=1).item()] # Emotion detection pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) emotion_result = pipe(message) emotion = emotion_result[0]['label'] # Get wellness professionals wellness_data = get_wellness_professionals(location) return history, history, sentiment, emotion, wellness_data # Gradio chatbot interface chatbot = gr.Chatbot(label="Mental Health Chatbot") location_input = gr.Textbox(label="Enter your location (latitude,longitude)", placeholder="e.g., 21.3,-157.8") # Gradio interface definition demo = gr.Interface( user_interface, [gr.Textbox(label="Message"), location_input, "state"], [chatbot, "state", "text", "text", "json"], allow_flagging="never", title="Mental Health & Well-being Assistant" ) # Launch Gradio interface if __name__ == "__main__": demo.launch()