DrSyedFaizan's picture
Update app.py
7a22544 verified
import torch
import time
import numpy as np
import pandas as pd
import evaluate
import gradio as gr
import re
import csv
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from sklearn.metrics import accuracy_score
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
from dataclasses import dataclass
from typing import List
# Load Accuracy and F1-Score Metrics
accuracy_metric = evaluate.load("accuracy")
f1_metric = evaluate.load("f1")
# Define Model Paths
MODEL_PATHS = {
"MindBERT": "DrSyedFaizan/mindBERT",
"BERT-base": "bert-base-uncased",
"RoBERTa": "roberta-base",
"DistilBERT": "distilbert-base-uncased"
}
# Label Mapping
LABEL_MAPPING = {
0: "Stress",
1: "Depression",
2: "Bipolar disorder",
3: "Personality disorder",
4: "Anxiety"
}
# Function to clean text using regular expressions
def clean_text(text):
text = text.lower()
text = re.sub(r'http\S+', '', text) # Remove URLs
text = re.sub(r'\s+', ' ', text) # Remove excessive whitespace
text = re.sub(r'[^a-zA-Z0-9 ]', '', text) # Remove special characters
return text.strip()
# Load and preprocess Reddit Mental Health Dataset
def load_reddit_data(file_path, sample_size=100):
df = pd.read_csv(file_path, sep=",", encoding="utf-8", quotechar='"', on_bad_lines="skip", engine="python")
df.columns = df.columns.str.strip() # Remove extra spaces from column names
print("Columns in dataset:", df.columns) # Debugging check
if "text" not in df.columns or "target" not in df.columns:
raise ValueError("Dataset does not contain required 'text' and 'target' columns.")
df = df.dropna(subset=["text", "target"]) # Ensure required columns exist
df["text"] = df["text"].apply(clean_text) # Clean text column
df_sample = df.sample(n=sample_size, random_state=42) # Sample a subset
test_texts = df_sample["text"].tolist()
test_labels = df_sample["target"].tolist()
return test_texts, test_labels
# Function to evaluate models
def evaluate_models(dataset_path):
test_texts, test_labels = load_reddit_data(dataset_path)
results = []
model_metadata = {
"MindBERT": {"model_type": "BERT", "precision": "float16", "params": 0.11, "license": "MIT"},
"BERT-base": {"model_type": "BERT", "precision": "float16", "params": 0.11, "license": "Apache-2.0"},
"RoBERTa": {"model_type": "RoBERTa", "precision": "float16", "params": 0.125, "license": "MIT"},
"DistilBERT": {"model_type": "DistilBERT", "precision": "float16", "params": 0.067, "license": "Apache-2.0"}
}
for model_name, model_path in MODEL_PATHS.items():
print(f"Evaluating {model_name}...")
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model.eval()
inputs = tokenizer(test_texts, padding=True, truncation=True, return_tensors="pt")
start_time = time.time()
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predictions = torch.argmax(logits, dim=1).numpy()
end_time = time.time()
accuracy = accuracy_score(test_labels, predictions)
f1_score = f1_metric.compute(predictions=predictions, references=test_labels, average="macro")["f1"]
inference_time = round(end_time - start_time, 4)
result = {
"model": model_name,
"model_type": model_metadata[model_name]["model_type"],
"precision": model_metadata[model_name]["precision"],
"params": model_metadata[model_name]["params"],
"accuracy": round(accuracy, 4),
"f1_score": round(f1_score, 4),
"inference_time": inference_time,
"license": model_metadata[model_name]["license"]
}
results.append(result)
return pd.DataFrame(results)
# Load and evaluate
DATASET_PATH = "https://huggingface.co/spaces/DrSyedFaizan/mindBERTevaluation/blob/main/rmhd.csv"
df_results = evaluate_models(DATASET_PATH)
# Initialize leaderboard with custom columns
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
columns = fields(ModelEvalColumn)
return Leaderboard(
value=dataframe,
datatype=[c.type for c in columns],
select_columns=SelectColumns(
default_selection=[c.name for c in columns if c.displayed_by_default],
cant_deselect=[c.name for c in columns if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=["model", "license"],
hide_columns=[c.name for c in columns if c.hidden],
filter_columns=[
ColumnFilter("model_type", type="checkboxgroup", label="Model types"),
ColumnFilter("precision", type="checkboxgroup", label="Precision"),
ColumnFilter(
"params",
type="slider",
min=0.01,
max=0.5,
label="Select the number of parameters (B)",
),
],
interactive=False,
)
# Custom CSS similar to the original
custom_css = """
.markdown-text {
padding: 0 20px;
}
.tab-buttons button.selected {
background-color: #FF9C00 !important;
color: white !important;
}
"""
# Create Gradio Interface
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML("<h1>Mental Health Model Evaluation Benchmark</h1>")
gr.Markdown("This benchmark evaluates various transformer models on mental health classification tasks.", elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Model Benchmark", elem_id="model-benchmark-tab", id=0):
# Get evaluation results
df_results = evaluate_models()
leaderboard = init_leaderboard(df_results)
with gr.TabItem("πŸ“ About", elem_id="about-tab", id=1):
gr.Markdown("""
## About This Benchmark
This leaderboard compares various transformer models on mental health text classification tasks.
The benchmark uses a test set from Reddit Mental Health datasets with examples covering anxiety,
depression, bipolar disorder, suicidal ideation, stress, and normal emotional states.
Models are evaluated on:
- Accuracy
- F1-Score (Macro)
- Inference Time
### Model Types
- BERT-based models
- RoBERTa models
- DistilBERT models
- Specialized mental health models (MindBERT)
""", elem_classes="markdown-text")
with gr.TabItem("πŸš€ Submit Model", elem_id="submit-tab", id=2):
gr.Markdown("# βœ‰οΈβœ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
model_path_textbox = gr.Textbox(label="Model path (HF repo ID)")
model_type = gr.Dropdown(
choices=["BERT", "RoBERTa", "DistilBERT", "GPT", "T5", "Other"],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=["float16", "float32", "int8", "int4"],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
params = gr.Number(label="Parameters (billions)", value=0.11)
license = gr.Textbox(label="License", value="Apache-2.0")
submit_button = gr.Button("Submit Model for Evaluation")
submission_result = gr.Markdown()
# This would typically connect to a submission system
def handle_submission(model_name, model_path, model_type, precision, params, license):
return f"Model {model_name} successfully submitted for evaluation. It will appear in the leaderboard once processing is complete."
submit_button.click(
handle_submission,
[model_name_textbox, model_path_textbox, model_type, precision, params, license],
submission_result,
)
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_text = """
@misc{mental-health-model-benchmark,
author = {Syed Faizan},
title = {Mental Health Model Benchmark},
year = {2025},
publisher = {GitHub},
url = {https://github.com/SYEDFAIZAN1987/mindBERT}
}
"""
citation_button = gr.Textbox(
value=citation_text,
label="Citation",
lines=10,
elem_id="citation-button",
show_copy_button=True,
)
demo.launch()