Delete extract_lora.py
Browse files- scripts/extract_lora.py +0 -163
scripts/extract_lora.py
DELETED
@@ -1,163 +0,0 @@
|
|
1 |
-
# import logging
|
2 |
-
# import os
|
3 |
-
# import random
|
4 |
-
# import signal
|
5 |
-
# import sys
|
6 |
-
# from pathlib import Path
|
7 |
-
|
8 |
-
# import fire
|
9 |
-
# import torch
|
10 |
-
# import yaml
|
11 |
-
# from addict import Dict
|
12 |
-
|
13 |
-
# from peft import set_peft_model_state_dict, get_peft_model_state_dict
|
14 |
-
|
15 |
-
# # add src to the pythonpath so we don't need to pip install this
|
16 |
-
# project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
|
17 |
-
# src_dir = os.path.join(project_root, "src")
|
18 |
-
# sys.path.insert(0, src_dir)
|
19 |
-
|
20 |
-
# from axolotl.utils.data import load_prepare_datasets
|
21 |
-
# from axolotl.utils.models import load_model
|
22 |
-
# from axolotl.utils.trainer import setup_trainer
|
23 |
-
# from axolotl.utils.wandb import setup_wandb_env_vars
|
24 |
-
|
25 |
-
# logging.basicConfig(level=os.getenv("LOG_LEVEL", "INFO"))
|
26 |
-
|
27 |
-
|
28 |
-
# def choose_device(cfg):
|
29 |
-
# def get_device():
|
30 |
-
# if torch.cuda.is_available():
|
31 |
-
# return "cuda"
|
32 |
-
# else:
|
33 |
-
# try:
|
34 |
-
# if torch.backends.mps.is_available():
|
35 |
-
# return "mps"
|
36 |
-
# except:
|
37 |
-
# return "cpu"
|
38 |
-
|
39 |
-
# cfg.device = get_device()
|
40 |
-
# if cfg.device == "cuda":
|
41 |
-
# cfg.device_map = {"": cfg.local_rank}
|
42 |
-
# else:
|
43 |
-
# cfg.device_map = {"": cfg.device}
|
44 |
-
|
45 |
-
|
46 |
-
# def choose_config(path: Path):
|
47 |
-
# yaml_files = [file for file in path.glob("*.yml")]
|
48 |
-
|
49 |
-
# if not yaml_files:
|
50 |
-
# raise ValueError(
|
51 |
-
# "No YAML config files found in the specified directory. Are you using a .yml extension?"
|
52 |
-
# )
|
53 |
-
|
54 |
-
# print("Choose a YAML file:")
|
55 |
-
# for idx, file in enumerate(yaml_files):
|
56 |
-
# print(f"{idx + 1}. {file}")
|
57 |
-
|
58 |
-
# chosen_file = None
|
59 |
-
# while chosen_file is None:
|
60 |
-
# try:
|
61 |
-
# choice = int(input("Enter the number of your choice: "))
|
62 |
-
# if 1 <= choice <= len(yaml_files):
|
63 |
-
# chosen_file = yaml_files[choice - 1]
|
64 |
-
# else:
|
65 |
-
# print("Invalid choice. Please choose a number from the list.")
|
66 |
-
# except ValueError:
|
67 |
-
# print("Invalid input. Please enter a number.")
|
68 |
-
|
69 |
-
# return chosen_file
|
70 |
-
|
71 |
-
|
72 |
-
# def save_latest_checkpoint_as_lora(
|
73 |
-
# config: Path = Path("configs/"),
|
74 |
-
# prepare_ds_only: bool = False,
|
75 |
-
# **kwargs,
|
76 |
-
# ):
|
77 |
-
# if Path(config).is_dir():
|
78 |
-
# config = choose_config(config)
|
79 |
-
|
80 |
-
# # load the config from the yaml file
|
81 |
-
# with open(config, "r") as f:
|
82 |
-
# cfg: Dict = Dict(lambda: None, yaml.load(f, Loader=yaml.Loader))
|
83 |
-
# # if there are any options passed in the cli, if it is something that seems valid from the yaml,
|
84 |
-
# # then overwrite the value
|
85 |
-
# cfg_keys = dict(cfg).keys()
|
86 |
-
# for k in kwargs:
|
87 |
-
# if k in cfg_keys:
|
88 |
-
# # handle booleans
|
89 |
-
# if isinstance(cfg[k], bool):
|
90 |
-
# cfg[k] = bool(kwargs[k])
|
91 |
-
# else:
|
92 |
-
# cfg[k] = kwargs[k]
|
93 |
-
|
94 |
-
# # setup some derived config / hyperparams
|
95 |
-
# cfg.gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
|
96 |
-
# cfg.world_size = int(os.environ.get("WORLD_SIZE", 1))
|
97 |
-
# cfg.local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
98 |
-
# assert cfg.local_rank == 0, "Run this with only one device!"
|
99 |
-
|
100 |
-
# choose_device(cfg)
|
101 |
-
# cfg.ddp = False
|
102 |
-
|
103 |
-
# if cfg.device == "mps":
|
104 |
-
# cfg.load_in_8bit = False
|
105 |
-
# cfg.tf32 = False
|
106 |
-
# if cfg.bf16:
|
107 |
-
# cfg.fp16 = True
|
108 |
-
# cfg.bf16 = False
|
109 |
-
|
110 |
-
# # Load the model and tokenizer
|
111 |
-
# logging.info("loading model, tokenizer, and lora_config...")
|
112 |
-
# model, tokenizer, lora_config = load_model(
|
113 |
-
# cfg.base_model,
|
114 |
-
# cfg.base_model_config,
|
115 |
-
# cfg.model_type,
|
116 |
-
# cfg.tokenizer_type,
|
117 |
-
# cfg,
|
118 |
-
# adapter=cfg.adapter,
|
119 |
-
# inference=True,
|
120 |
-
# )
|
121 |
-
|
122 |
-
# model.config.use_cache = False
|
123 |
-
|
124 |
-
# if torch.__version__ >= "2" and sys.platform != "win32":
|
125 |
-
# logging.info("Compiling torch model")
|
126 |
-
# model = torch.compile(model)
|
127 |
-
|
128 |
-
# possible_checkpoints = [str(cp) for cp in Path(cfg.output_dir).glob("checkpoint-*")]
|
129 |
-
# if len(possible_checkpoints) > 0:
|
130 |
-
# sorted_paths = sorted(
|
131 |
-
# possible_checkpoints, key=lambda path: int(path.split("-")[-1])
|
132 |
-
# )
|
133 |
-
# resume_from_checkpoint = sorted_paths[-1]
|
134 |
-
# else:
|
135 |
-
# raise FileNotFoundError("Checkpoints folder not found")
|
136 |
-
|
137 |
-
# pytorch_bin_path = os.path.join(resume_from_checkpoint, "pytorch_model.bin")
|
138 |
-
|
139 |
-
# assert os.path.exists(pytorch_bin_path), "Bin not found"
|
140 |
-
|
141 |
-
# logging.info(f"Loading {pytorch_bin_path}")
|
142 |
-
# adapters_weights = torch.load(pytorch_bin_path, map_location="cpu")
|
143 |
-
|
144 |
-
# # d = get_peft_model_state_dict(model)
|
145 |
-
# print(model.load_state_dict(adapters_weights))
|
146 |
-
# # with open('b.log', "w") as f:
|
147 |
-
# # f.write(str(d.keys()))
|
148 |
-
# assert False
|
149 |
-
|
150 |
-
# print((adapters_weights.keys()))
|
151 |
-
# with open("a.log", "w") as f:
|
152 |
-
# f.write(str(adapters_weights.keys()))
|
153 |
-
# assert False
|
154 |
-
|
155 |
-
# logging.info("Setting peft model state dict")
|
156 |
-
# set_peft_model_state_dict(model, adapters_weights)
|
157 |
-
|
158 |
-
# logging.info(f"Set Completed!!! Saving pre-trained model to {cfg.output_dir}")
|
159 |
-
# model.save_pretrained(cfg.output_dir)
|
160 |
-
|
161 |
-
|
162 |
-
# if __name__ == "__main__":
|
163 |
-
# fire.Fire(save_latest_checkpoint_as_lora)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|