import gradio as gr from folium import Map import numpy as np from ast import literal_eval import pandas as pd from gradio_folium import Folium import folium from huggingface_hub import InferenceClient from geopy.geocoders import Nominatim from examples import ( description_sf, output_example_sf, description_loire, output_example_loire, df_examples ) geolocator = Nominatim(user_agent="HF-trip-planner") def get_coordinates(address): location = geolocator.geocode(address) if location: return (location.latitude, location.longitude) else: return None repo_id = "mistralai/Mixtral-8x7B-Instruct-v0.1" llm_client = InferenceClient(model=repo_id, timeout=180) def generate_key_points(text): prompt = f""" Please generate a set of key geographical points for the following description: {text}, as a json list of less than 10 dictionnaries with the following keys: 'name', 'description'. Precise the full location in the 'name' if there is a possible ambiguity. Generally try to minimze the distance between locations. Always think of the transportation means that you want to use, and the timing: morning, afternoon, where to sleep. Only generate a 'Thought:' and a 'Key points:' sections, nothing else. For instance: Description: {description_sf} Thought: {output_example_sf} Description: {description_loire} Thought: {output_example_loire} Now begin. You can make the descriptions a bit more verbose than in the examples. Description: {text} Thought: """ return llm_client.text_generation(prompt, max_new_tokens=2000) def parse_llm_output(output): rationale = "Thought: " + output.split("Key points:")[0] key_points = output.split("Key points:")[1] output = key_points.replace(" ", "") parsed_output = literal_eval(output) dataframe = pd.DataFrame.from_dict(parsed_output) return dataframe, rationale def get_coordinates_row(row): coords = get_coordinates(row["name"]) if coords is not None: row["lat"], row["lon"] = coords return row def create_map_from_markers(dataframe): dataframe = dataframe.apply(get_coordinates_row, axis=1) f_map = Map( location=[dataframe["lat"].mean(), dataframe["lon"].mean()], zoom_start=5, tiles="CartoDB Voyager", ) for _, row in dataframe.iterrows(): if np.isnan(row["lat"]) or np.isnan(row["lon"]): continue marker = folium.CircleMarker( location=[row["lat"], row["lon"]], radius=10, popup=folium.Popup( f"

{row['name']}

{row['description']}

", max_width=450 ), fill=True, fill_color="blue", fill_opacity=0.6, color="blue", weight=1, ) marker.add_to(f_map), bounds = [[row["lat"], row["lon"]] for _, row in dataframe.iterrows()] f_map.fit_bounds(bounds, padding=(100, 100)) return f_map def run_display(text): output = generate_key_points(text) dataframe, rationale = parse_llm_output(output) map = create_map_from_markers(dataframe) return map, rationale df_examples = pd.DataFrame.from_dict( [ {"description": description_loire, "output": output_example_loire}, {"description": description_aligned, "output": output_example_aligned}, {"description": description_chinatown, "output": output_example_chinatown}, {"description": description_taiwan, "output": output_example_taiwan}, ] ) def select_example(df, data: gr.SelectData): row = df.iloc[data.index[0], :] dataframe, rationale = parse_llm_output(row["output"]) return row["description"], create_map_from_markers(dataframe), rationale with gr.Blocks( theme=gr.themes.Soft( primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.blue, ) ) as demo: gr.Markdown("# πŸ—ΊοΈ LLM trip planner (based on Mixtral)") text = gr.Textbox( label="Describe your trip here:", value=description_sf, ) button = gr.Button() gr.Markdown("### LLM Output πŸ‘‡\n_Click the map to see information about the places._") # Get initial map and rationale example_dataframe, example_rationale = parse_llm_output(output_example_sf) display_rationale = gr.Markdown(example_rationale) starting_map = create_map_from_markers(example_dataframe) map = Folium(value=starting_map, height=700, label="Chosen locations") button.click(run_display, inputs=[text], outputs=[map, display_rationale]) gr.Markdown("### Other examples") clickable_examples = gr.DataFrame(value=df_examples, height=200) clickable_examples.select( select_example, clickable_examples, outputs=[text, map, display_rationale] ) if __name__ == "__main__": demo.launch()