import os import re import gradio as gr import edge_tts import asyncio import time import tempfile from huggingface_hub import InferenceClient client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") system_instructions1 = "[SYSTEM] You are AI assistant named DorjGPT, Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. The request asks you to provide friendly responses as if super interlligent AI assistant. The expectation is that I will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]" global history history = [] def format_prompt(message, history): prompt = system_instructions1 for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt async def generate1(prompt, history=[], b=None): generate_kwargs = dict( temperature=0.6, max_new_tokens=256, top_p=0.95, repetition_penalty=1, do_sample=True, seed=42, ) #formatted_prompt = system_instructions1 + prompt + "[JARVIS]" formatted_prompt = format_prompt(f"{system_instructions1}, {prompt}", history) + "[DORJGPT]" stream = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) output = "" for response in stream: output += response.token.text output = output.replace("","") history.append([prompt, output]) communicate = edge_tts.Communicate(output) with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: tmp_path = tmp_file.name await communicate.save(tmp_path) yield tmp_path with gr.Blocks(theme="gradio/monochrome", title="Dorj Assistant") as demo: gr.HTML("""

DorjGPT

""") with gr.Column(): output_audio = gr.Audio(label="DorjGPT", type="filepath", interactive=False, visible=False, autoplay=True, elem_classes="audio") user_input = gr.Textbox(label="Question", value="What is this application?") with gr.Tab(): with gr.Row(): translate_btn = gr.Button("Submit") translate_btn.click(fn=generate1, inputs=user_input, outputs=output_audio, api_name="translate") if __name__ == "__main__": demo.queue(max_size=30).launch()