import gradio as gr # Load model directly from transformers import pipeline from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Dorjzodovsuren/mongolian-gpt2") model = AutoModelForCausalLM.from_pretrained("Dorjzodovsuren/mongolian-gpt2", from_flax=True) generation_params = { "do_sample": True, "temperature": 0.3, "top_p": 0.95, "top_k": 40, "max_new_tokens": 64, "repetition_penalty": 2.1 } # Create a text generation pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, **generation_params) def text_generator(text): return pipe(text)[0]["response"] demo = gr.Interface(fn=text_generator, inputs="textbox", outputs="textbox") if __name__ == "__main__": demo.launch()