import gradio as gr from PIL import Image import numpy as np import cv2 import face_recognition import os # Load images for face recognition Images = [] classnames = [] directory = "photos" myList = os.listdir(directory) for cls in myList: if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]: img_path = os.path.join(directory, cls) curImg = cv2.imread(img_path) Images.append(curImg) classnames.append(os.path.splitext(cls)[0]) def findEncodings(Images): encodeList = [] for img in Images: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) encode = face_recognition.face_encodings(img)[0] encodeList.append(encode) return encodeList encodeListknown = findEncodings(Images) # Function for face recognition def recognize_faces(img): image = np.array(img) imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25) imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB) facesCurFrame = face_recognition.face_locations(imgS) encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame) name = "Unknown" # Default name for unknown faces if len(encodesCurFrame) > 0: for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame): matches = face_recognition.compare_faces(encodeListknown, encodeFace) faceDis = face_recognition.face_distance(encodeListknown, encodeFace) matchIndex = np.argmin(faceDis) if matches[matchIndex]: name = classnames[matchIndex].upper() y1, x2, y2, x1 = faceLoc y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4 cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED) cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2) return image # Create Gradio interface iface = gr.Interface( fn=recognize_faces, inputs="image", outputs="image", live=True, capture_session=True, interpretation="default", title="Face Recognition App", description="This app recognizes faces in an image and updates attendance." ) iface.launch()